
How to think like a computer scientist

Allen B. Downey

C++ Version, First Edition

2

How to think like a computer scientist
C++ Version, First Edition

Copyright (C) 1999 Allen B. Downey

This book is an Open Source Textbook (OST). Permission is granted to
reproduce, store or transmit the text of this book by any means, electrical,
mechanical, or biological, in accordance with the terms of the GNU General
Public License as published by the Free Software Foundation (version 2).

This book is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

The original form of this book is LaTeX source code. Compiling this LaTeX
source has the effect of generating a device-independent representation of a
textbook, which can be converted to other formats and printed. All intermediate
representations (including DVI and Postscript), and all printed copies of the
textbook are also covered by the GNU General Public License.

The LaTeX source for this book, and more information about the Open
Source Textbook project, is available from

http://www.cs.colby.edu/~downey/ost

or by writing to Allen B. Downey, 5850 Mayflower Hill, Waterville, ME 04901.
The GNU General Public License is available from www.gnu.org or by writ-

ing to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

This book was typeset by the author using LaTeX and dvips, which are both
free, open-source programs.

Contents

1 The way of the program 1
1.1 What is a programming language? 1
1.2 What is a program? . 3
1.3 What is debugging? . 4

1.3.1 Compile-time errors . 4
1.3.2 Run-time errors . 4
1.3.3 Logic errors and semantics 4
1.3.4 Experimental debugging 5

1.4 Formal and natural languages . 5
1.5 The first program . 7
1.6 Glossary . 8

2 Variables and types 11
2.1 More output . 11
2.2 Values . 12
2.3 Variables . 13
2.4 Assignment . 13
2.5 Outputting variables . 14
2.6 Keywords . 15
2.7 Operators . 16
2.8 Order of operations . 17
2.9 Operators for characters . 17
2.10 Composition . 18
2.11 Glossary . 18

3 Function 21
3.1 Floating-point . 21
3.2 Converting from double to int 22
3.3 Math functions . 23
3.4 Composition . 24
3.5 Adding new functions . 24
3.6 Definitions and uses . 26
3.7 Programs with multiple functions 27
3.8 Parameters and arguments . 27

i

ii CONTENTS

3.9 Parameters and variables are local 28

3.10 Functions with multiple parameters 29

3.11 Functions with results . 30

3.12 Glossary . 30

4 Conditionals and recursion 31

4.1 The modulus operator . 31

4.2 Conditional execution . 31

4.3 Alternative execution . 32

4.4 Chained conditionals . 33

4.5 Nested conditionals . 33

4.6 The return statement . 34

4.7 Recursion . 34

4.8 Infinite recursion . 36

4.9 Stack diagrams for recursive functions 36

4.10 Glossary . 37

5 Fruitful functions 39

5.1 Return values . 39

5.2 Program development . 41

5.3 Composition . 43

5.4 Overloading . 44

5.5 Boolean values . 45

5.6 Boolean variables . 45

5.7 Logical operators . 46

5.8 Bool functions . 46

5.9 Returning from main . 47

5.10 More recursion . 48

5.11 Leap of faith . 50

5.12 One more example . 51

5.13 Glossary . 51

6 Iteration 53

6.1 Multiple assignment . 53

6.2 Iteration . 54

6.3 The while statement . 54

6.4 Tables . 56

6.5 Two-dimensional tables . 58

6.6 Encapsulation and generalization 58

6.7 Functions . 59

6.8 More encapsulation . 60

6.9 Local variables . 60

6.10 More generalization . 61

6.11 Glossary . 63

CONTENTS iii

7 Strings and things 65
7.1 Containers for strings . 65
7.2 apstring variables . 66
7.3 Extracting characters from a string 66
7.4 Length . 67
7.5 Traversal . 67
7.6 A run-time error . 68
7.7 The find function . 68
7.8 Our own version of find . 69
7.9 Looping and counting . 69
7.10 Increment and decrement operators 70
7.11 String concatenation . 71
7.12 apstrings are mutable . 72
7.13 apstrings are comparable . 72
7.14 Character classification . 73
7.15 Other apstring functions . 73
7.16 Glossary . 74

8 Structures 75
8.1 Compound values . 75
8.2 Point objects . 75
8.3 Accessing instance variables . 76
8.4 Operations on structures . 77
8.5 Structures as parameters . 78
8.6 Call by value . 78
8.7 Call by reference . 79
8.8 Rectangles . 80
8.9 Structures as return types . 82
8.10 Passing other types by reference 82
8.11 Getting user input . 83
8.12 Glossary . 85

9 More structures 87
9.1 Time . 87
9.2 printTime . 88
9.3 Functions for objects . 88
9.4 Pure functions . 88
9.5 const parameters . 90
9.6 Modifiers . 90
9.7 Fill-in functions . 91
9.8 Which is best? . 92
9.9 Incremental development versus planning 92
9.10 Generalization . 93
9.11 Algorithms . 94
9.12 Glossary . 95

iv CONTENTS

10 Vectors 97
10.1 Accessing elements . 98
10.2 Copying vectors . 99
10.3 for loops . 99
10.4 Vector length . 100
10.5 Random numbers . 100
10.6 Statistics . 102
10.7 Vector of random numbers . 102
10.8 Counting . 103
10.9 Checking the other values . 104
10.10A histogram . 105
10.11A single-pass solution . 105
10.12Random seeds . 106
10.13Glossary . 106

11 Member functions 109
11.1 Objects and functions . 109
11.2 print . 110
11.3 Implicit variable access . 111
11.4 Another example . 112
11.5 Yet another example . 113
11.6 A more complicated example . 113
11.7 Constructors . 114
11.8 Initialize or construct? . 115
11.9 One last example . 115
11.10Header files . 116
11.11Glossary . 119

12 Vectors of Objects 121
12.1 Composition . 121
12.2 Card objects . 121
12.3 The printCard function . 123
12.4 The equals function . 125
12.5 The isGreater function . 126
12.6 Vectors of cards . 127
12.7 The printDeck function . 129
12.8 Searching . 129
12.9 Bisection search . 130
12.10Decks and subdecks . 133
12.11Glossary . 133

13 Objects of Vectors 135
13.1 Enumerated types . 135
13.2 switch statement . 136
13.3 Decks . 138
13.4 Another constructor . 139

CONTENTS v

13.5 Deck member functions . 139
13.6 Shuffling . 141
13.7 Sorting . 141
13.8 Subdecks . 142
13.9 Shuffling and dealing . 143
13.10Mergesort . 143
13.11Glossary . 145

14 Classes and invariants 147
14.1 Private data and classes . 147
14.2 What is a class? . 148
14.3 Complex numbers . 149
14.4 Accessor functions . 151
14.5 Output . 152
14.6 A function on Complex numbers 153
14.7 Another function on Complex numbers 153
14.8 Invariants . 154
14.9 Preconditions . 155
14.10Private functions . 157
14.11Glossary . 158

15 File Input/Output and apmatrixes 159
15.1 Streams . 159
15.2 File input . 160
15.3 File output . 161
15.4 Parsing input . 161
15.5 Parsing numbers . 163
15.6 The Set data structure . 164
15.7 apmatrix . 167
15.8 A distance matrix . 168
15.9 A proper distance matrix . 169
15.10Glossary . 171

A Quick reference for AP classes 173
A.1 apstring . 173
A.2 apvector . 174
A.3 apmatrix . 175

vi CONTENTS

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. I like
the way computer scientists think because they combine some of the best fea-
tures of Mathematics, Engineering, and Natural Science. Like mathematicians,
computer scientists use formal languages to denote ideas (specifically computa-
tions). Like engineers, they design things, assembling components into systems
and evaluating tradeoffs among alternatives. Like scientists, they observe the
behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem-solving.
By that I mean the ability to formulate problems, think creatively about solu-
tions, and express a solution clearly and accurately. As it turns out, the process
of learning to program is an excellent opportunity to practice problem-solving
skills. That’s why this chapter is called “The way of the program.”

Of course, the other goal of this book is to prepare you for the Computer
Science AP Exam. We may not take the most direct approach to that goal,
though. For example, there are not many exercises in this book that are similar
to the AP questions. On the other hand, if you understand the concepts in this
book, along with the details of programming in C++, you will have all the tools
you need to do well on the exam.

1.1 What is a programming language?

The programming language you will be learning is C++, because that is the
language the AP exam is based on, as of 1998. Before that, the exam used
Pascal. Both C++ and Pascal are high-level languages; other high-level
languages you might have heard of are Java, C and FORTRAN.

As you might infer from the name “high-level language,” there are also
low-level languages, sometimes referred to as machine language or assembly
language. Loosely-speaking, computers can only execute programs written in
low-level languages. Thus, programs written in a high-level language have to
be translated before they can run. This translation takes some time, which is a

1

2 CHAPTER 1. THE WAY OF THE PROGRAM

small disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in
a high-level language; by “easier” I mean that the program takes less time to
write, it’s shorter and easier to read, and it’s more likely to be correct. Secondly,
high-level languages are portable, meaning that they can run on different kinds
of computers with few or no modifications. Low-level programs can only run on
one kind of computer, and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level lan-
guages. Low-level languages are only used for a few special applications.

There are two ways to translate a program; interpreting or compiling.
An interpreter is a program that reads a high-level program and does what it
says. In effect, it translates the program line-by-line, alternately reading lines
and carrying out commands.

interpreter

source

code

The interpreter

reads the

source code...

... and the result

appears on

the screen.

A compiler is a program that reads a high-level program and translates it all
at once, before executing any of the commands. Often you compile the program
as a separate step, and then execute the compiled code later. In this case, the
high-level program is called the source code, and the translated program is
called the object code or the executable.

As an example, suppose you write a program in C++. You might use a
text editor to write the program (a text editor is a simple word processor).
When the program is finished, you might save it in a file named program.cpp,
where “program” is an arbitrary name you make up, and the suffix .cpp is a
convention that indicates that the file contains C++ source code.

Then, depending on what your programming environment is like, you might
leave the text editor and run the compiler. The compiler would read your source
code, translate it, and create a new file named program.o to contain the object
code, or program.exe to contain the executable.

1.2. WHAT IS A PROGRAM? 3

object

code executor

The compiler

reads the

source code...

... and generates

object code.

You execute the

program (one way

or another)...

... and the result

appears on

the screen.

source

code compiler

The next step is to run the program, which requires some kind of executor.
The role of the executor is to load the program (copy it from disk into memory)
and make the computer start executing the program.

Although this process may seem complicated, the good news is that in
most programming environments (sometimes called development environments),
these steps are automated for you. Usually you will only have to write a pro-
gram and type a single command to compile and run it. On the other hand, it
is useful to know what the steps are that are happening in the background, so
that if something goes wrong you can figure out what it is.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, like solving a
system of equations or finding the roots of a polynomial, but it can also be
a symbolic computation, like searching and replacing text in a document or
(strangely enough) compiling a program.

The instructions (or commands, or statements) look different in different
programming languages, but there are a few basic functions that appear in just
about every language:

input: Get data from the keyboard, or a file, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

testing: Check for certain conditions and execute the appropriate sequence of
statements.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve
ever used, no matter how complicated, is made up of functions that look more or
less like these. Thus, one way to describe programming is the process of breaking
a large, complex task up into smaller and smaller subtasks until eventually the
subtasks are simple enough to be performed with one of these simple functions.

4 CHAPTER 1. THE WAY OF THE PROGRAM

1.3 What is debugging?

Programming is a complex process, and since it is done by human beings, it often
leads to errors. For whimsical reasons, programming errors are called bugs and
the process of tracking them down and correcting them is called debugging.

There are a few different kinds of errors that can occur in a program, and it
is useful to distinguish between them in order to track them down more quickly.

1.3.1 Compile-time errors

The compiler can only translate a program if the program is syntactically cor-
rect; otherwise, the compilation fails and you will not be able to run your
program. Syntax refers to the structure of your program and the rules about
that structure.

For example, in English, a sentence must begin with a capital letter and end
with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is
why we can read the poetry of e e cummings without spewing error messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in
your program, the compiler will print an error message and quit, and you will
not be able to run your program.

To make matters worse, there are more syntax rules in C++ than there
are in English, and the error messages you get from the compiler are often
not very helpful. During the first few weeks of your programming career, you
will probably spend a lot of time tracking down syntax errors. As you gain
experience, though, you will make fewer errors and find them faster.

1.3.2 Run-time errors

The second type of error is a run-time error, so-called because the error does
not appear until you run the program.

For the simple sorts of programs we will be writing for the next few weeks,
run-time errors are rare, so it might be a little while before you encounter one.

1.3.3 Logic errors and semantics

The third type of error is the logical or semantic error. If there is a logical
error in your program, it will compile and run successfully, in the sense that
the computer will not generate any error messages, but it will not do the right
thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted
to write. The meaning of the program (its semantics) is wrong. Identifying
logical errors can be tricky, since it requires you to work backwards by looking
at the output of the program and trying to figure out what it is doing.

1.4. FORMAL AND NATURAL LANGUAGES 5

1.3.4 Experimental debugging

One of the most important skills you should acquire from working with this
book is debugging. Although it can be frustrating, debugging is one of the most
intellectually rich, challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with
clues and you have to infer the processes and events that lead to the results you
see.

Debugging is also like an experimental science. Once you have an idea what
is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modification, and you take
a step closer to a working program. If your hypothesis was wrong, you have to
come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth.” (from A. Conan Doyle’s The Sign of Four).

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does what
you want. The idea is that you should always start with a working program
that does something, and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines
of code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing AAAA and BBBB.
This later evolved to Linux” (from The Linux Users’ Guide Beta Version 1).

In later chapters I will make more suggestions about debugging and other
programming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, like English, Spanish,
and French. They were not designed by people (although people try to impose
some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific
applications. For example, the notation that mathematicians use is a formal
language that is particularly good at denoting relationships among numbers and
symbols. Chemists use a formal language to represent the chemical structure of
molecules. And most importantly:

Programming languages are formal languages that have
been designed to express computations.

As I mentioned before, formal languages tend to have strict rules about
syntax. For example, 3+3 = 6 is a syntactically correct mathematical statement,
but 3 = +6$ is not. Also, H2O is a syntactically correct chemical name, but

2Zz is not.

6 CHAPTER 1. THE WAY OF THE PROGRAM

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens
are the basic elements of the language, like words and numbers and chemical
elements. One of the problems with 3=+6$ is that $ is not a legal token in
mathematics (at least as far as I know). Similarly, 2Zz is not legal because
there is no element with the abbreviation Zz.

The second type of syntax error pertains to the structure of a statement;
that is, the way the tokens are arranged. The statement 3=+6$ is structurally
illegal, because you can’t have a plus sign immediately after an equals sign.
Similarly, molecular formulas have to have subscripts after the element name,
not before.

When you read a sentence in English or a statement in a formal language,
you have to figure out what the structure of the sentence is (although in a
natural language you do this unconsciously). This process is called parsing.

For example, when you hear the sentence, “The other shoe fell,” you under-
stand that “the other shoe” is the subject and “fell” is the verb. Once you have
parsed a sentence, you can figure out what it means, that is, the semantics of
the sentence. Assuming that you know what a shoe is, and what it means to
fall, you will understand the general implication of this sentence.

Although formal and natural languages have many features in common—
tokens, structure, syntax and semantics—there are many differences.

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstand-
ings, natural languages employ lots of redundancy. As a result, they are
often verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The
other shoe fell,” there is probably no shoe and nothing falling. Formal
languages mean exactly what they say.

People who grow up speaking a natural language (everyone) often have a
hard time adjusting to formal languages. In some ways the difference between
formal and natural language is like the difference between poetry and prose, but
more so:

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity
is not only common but often deliberate.

Prose: The literal meaning of words is more important and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry,
but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

1.5. THE FIRST PROGRAM 7

Here are some suggestions for reading programs (and other formal lan-
guages). First, remember that formal languages are much more dense than
natural languages, so it takes longer to read them. Also, the structure is very
important, so it is usually not a good idea to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens
and interpreting the structure. Finally, remember that the details matter. Lit-
tle things like spelling errors and bad punctuation, which you can get away with
in natural languages, can make a big difference in a formal language.

1.5 The first program

Traditionally the first program people write in a new language is called “Hello,
World.” because all it does is print the words “Hello, World.” In C++, this
program looks like this:

#include <iostream.h>

// main: generate some simple output

void main ()

{

cout << "Hello, world." << endl;

return 0

}

Some people judge the quality of a programming language by the simplicity of
the “Hello, World.” program. By this standard, C++ does reasonably well.
Even so, this simple program contains several features that are hard to explain
to beginning programmers. For now, we will ignore some of them, like the first
line.

The second line begins with //, which indicates that it is a comment. A
comment is a bit of English text that you can put in the middle of a program,
usually to explain what the program does. When the compiler sees a //, it
ignores everything from there until the end of the line.

In the third line, you can ignore the word void for now, but notice the
word main. main is a special name that indicates the place in the program
where execution begins. When the program runs, it starts by executing the first
statement in main and it continues, in order, until it gets to the last statement,
and then it quits.

There is no limit to the number of statements that can be in main, but the
example contains only one. It is a basic output statement, meaning that it
outputs or displays a message on the screen.

cout is a special object provided by the system to allow you to send output
to the screen. The symbol << is an operator that you apply to cout and a
string, and that causes the string to be displayed.

8 CHAPTER 1. THE WAY OF THE PROGRAM

endl is a special symbol that represents the end of a line. When you send
an endl to cout, it causes the cursor to move to the next line of the display.
The next time you output something, the new text appears on the next line.

Like all statements, the output statement ends with a semi-colon (;).
There are a few other things you should notice about the syntax of this

program. First, C++ uses squiggly-braces ({ and }) to group things together.
In this case, the output statement is enclosed in squiggly-braces, indicating that
it is inside the definition of main. Also, notice that the statement is indented,
which helps to show visually which lines are inside the definition.

At this point it would be a good idea to sit down in front of a computer and
compile and run this program. The details of how to do that depend on your
programming environment, but from now on in this book I will assume that you
know how to do it.

As I mentioned, the C++ compiler is a real stickler for syntax. If you make
any errors when you type in the program, chances are that it will not compile
successfully. For example, if you misspell iostream, you might get an error
message like the following:

hello.cpp:1: oistream.h: No such file or directory

There is a lot of information on this line, but it is presented in a dense format
that is not easy to interpret. A more friendly compiler might say something
like:

“On line 1 of the source code file named hello.cpp, you tried to
include a header file named oistream.h. I didn’t find anything with
that name, but I did find something named iostream.h. Is that what
you meant, by any chance?”

Unfortunately, few compilers are so accomodating. The compiler is not really
very smart, and in most cases the error message you get will be only a hint about
what is wrong. It will take some time to gain facility at interpreting compiler
messages.

Nevertheless, the compiler can be a useful tool for learning the syntax rules
of a language. Starting with a working program (like hello.cpp), modify it
in various ways and see what happens. If you get an error message, try to
remember what the message says and what caused it, so if you see it again in
the future you will know what it means.

1.6 Glossary

problem-solving: The process of formulating a problem, finding a solution,
and expressing the solution.

high-level language: A programming language like C++ that is designed to
be easy for humans to read and write.

1.6. GLOSSARY 9

low-level language: A programming language that is designed to be easy for
a computer to execute. Also called “machine language” or “assembly
language.”

portability: A property of a program that can run on more than one kind of
computer.

formal language: Any of the languages people have designed for specific pur-
poses, like representing mathematical ideas or computer programs. All
programming languages are formal languages.

natural language: Any of the languages people speak that have evolved nat-
urally.

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program in a high-level language into a low-level lan-
guage, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.

object code: The output of the compiler, after translating the program.

executable: Another name for object code that is ready to be executed.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

syntax: The structure of a program.

semantics: The meaning of a program.

parse: To examine a program and analyze the syntactic structure.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to compile).

run-time error: An error in a program that makes it fail at run-time.

logical error: An error in a program that makes it do something other than
what the programmer intended.

debugging: The process of finding and removing any of the three kinds of
errors.

10 CHAPTER 1. THE WAY OF THE PROGRAM

Chapter 2

Variables and types

2.1 More output

As I mentioned in the last chapter, you can put as many statements as you want
in main. For example, to output more than one line:

#include <iostream.h>

// main: generate some simple output

void main ()

{

cout << "Hello, world." << endl; // output one line

cout << "How are you?" << endl; // output another

}

As you can see, it is legal to put comments at the end of a line, as well as on a
line by themselves.

The phrases that appear in quotation marks are called strings, because
they are made up of a sequence (string) of letters. Actually, strings can con-
tain any combination of letters, numbers, punctuation marks, and other special
characters.

Often it is useful to display the output from multiple output statements all
on one line. You can do this by leaving out the first endl:

void main ()

{

cout << "Goodbye, ";

cout << "cruel world!" << endl;

}

In this case the output appears on a single line as Goodbye, cruel world!.
Notice that there is a space between the word “Goodbye,” and the second

11

12 CHAPTER 2. VARIABLES AND TYPES

quotation mark. This space appears in the output, so it affects the behavior of
the program.

Spaces that appear outside of quotation marks generally do not affect the
behavior of the program. For example, I could have written:

void main ()

{

cout<<"Goodbye, ";

cout<<"cruel world!"<<endl;

}

This program would compile and run just as well as the original. The breaks
at the ends of lines (newlines) do not affect the program’s behavior either, so I
could have written:

void main(){cout<<"Goodbye, ";cout<<"cruel world!"<<endl;}

That would work, too, although you have probably noticed that the program is
getting harder and harder to read. Newlines and spaces are useful for organizing
your program visually, making it easier to read the program and locate syntax
errors.

2.2 Values

A value is one of the fundamental things—like a letter or a number—that a
program manipulates. The only values we have manipulated so far are the string
values we have been outputting, like "Hello, world.". You (and the compiler)
can identify string values because they are enclosed in quotation marks.

There are other kinds of values, including integers and characters. An integer
is a whole number like 1 or 17. You can output integer values the same way you
output strings:

cout << 17 << endl;

A character value is a letter or digit or punctuation mark enclosed in single
quotes, like ’a’ or ’5’. You can output character values the same way:

cout << ’}’ << endl;

This example outputs a single close squiggly-brace on a line by itself.

It is easy to confuse different types of values, like "5", ’5’ and 5, but if you
pay attention to the punctuation, it should be clear that the first is a string, the
second is a character and the third is an integer. The reason this distinction is
important should become clear soon.

2.3. VARIABLES 13

2.3 Variables

One of the most powerful features of a programming language is the ability to
manipulate variables. A variable is a named location that stores a value.

Just as there are different types of values (integer, character, etc.), there
are different types of variables. When you create a new variable, you have to
declare what type it is. For example, the character type in C++ is called char.
The following statement creates a new variable named fred that has type char.

char fred;

This kind of statement is called a declaration.
The type of a variable determines what kind of values it can store. A char

variable can contain characters, and it should come as no surprise that int

variables can store integers.
There are several types in C++ that can store string values, but we are

going to skip that for now (see Chapter 7).
To create an integer variable, the syntax is

int bob;

where bob is the arbitrary name you made up for the variable. In general, you
will want to make up variable names that indicate what you plan to do with
the variable. For example, if you saw these variable declarations:

char firstLetter;

char lastLetter;

int hour, minute;

you could probably make a good guess at what values would be stored in them.
This example also demonstrates the syntax for declaring multiple variables with
the same type: hour and minute are both integers (int type).

2.4 Assignment

Now that we have created some variables, we would like to store values in them.
We do that with an assignment statement.

firstLetter = ’a’; // give firstLetter the value ’a’

hour = 11; // assign the value 11 to hour

minute = 59; // set minute to 59

This example shows three assignments, and the comments show three different
ways people sometimes talk about assignment statements. The vocabulary can
be confusing here, but the idea is straightforward:

• When you declare a variable, you create a named storage location.

14 CHAPTER 2. VARIABLES AND TYPES

• When you make an assignment to a variable, you give it a value.

A common way to represent variables on paper is to draw a box with the
name of the variable on the outside and the value of the variable on the inside.
This kind of figure is called a state diagram because is shows what state each
of the variables is in (you can think of it as the variable’s “state of mind”). This
diagram shows the effect of the three assignment statements:

hour minute

11 59’a’

firstLetter

I sometimes use different shapes to indicate different variable types. These
shapes should help remind you that one of the rules in C++ is that a variable
has to have the same type as the value you assign it. For example, you cannot
store a string in an int variable. The following statement generates a compiler
error.

int hour;

hour = "Hello."; // WRONG !!

This rule is sometimes a source of confusion, because there are many ways that
you can convert values from one type to another, and C++ sometimes converts
things automatically. But for now you should remember that as a general rule
variables and values have the same type, and we’ll talk about special cases later.

Another source of confusion is that some strings look like integers, but they
are not. For example, the string "123", which is made up of the characters 1,
2 and 3, is not the same thing as the number 123. This assignment is illegal:

minute = "59"; // WRONG!

2.5 Outputting variables

You can output the value of a variable using the same commands we used to
output simple values.

int hour, minute;

char colon;

hour = 11;

minute = 59;

colon = ’:’;

cout << "The current time is ";

2.6. KEYWORDS 15

cout << hour;

cout << colon;

cout << minute;

cout << endl;

This program creates two integer variables named hour and minute, and a
character variable named colon. It assigns appropriate values to each of the
variables and then uses a series of output statements to generate the following:

The current time is 11:59

When we talk about “outputting a variable,” we mean outputting the value

of the variable. To output the name of a variable, you have to put it in quotes.
For example: cout << "hour";

As we have seen before, you can include more than one value in a single
output statement, which can make the previous program more concise:

int hour, minute;

char colon;

hour = 11;

minute = 59;

colon = ’:’;

cout << "The current time is " << hour << colon << minute << endl;

On one line, this program outputs a string, two integers, a character, and the
special value endl. Very impressive!

2.6 Keywords

A few sections ago, I said that you can make up any name you want for your
variables, but that’s not quite true. There are certain words that are reserved
in C++ because they are used by the compiler to parse the structure of your
program, and if you use them as variable names, it will get confused. These
words, called keywords, include int, char, void, endl and many more.

The complete list of keywords is included in the C++ Standard, which is
the official language definition adopted by the the International Organization
for Standardization (ISO) on September 1, 1998. You can download a copy
electronically from

http://www.ansi.org/

Rather than memorize the list, I would suggest that you take advantage of a
feature provided in many development environments: code highlighting. As
you type, different parts of your program should appear in different colors. For
example, keywords might be blue, strings red, and other code black. If you
type a variable name and it turns blue, watch out! You might get some strange
behavior from the compiler.

16 CHAPTER 2. VARIABLES AND TYPES

2.7 Operators

Operators are special symbols that are used to represent simple computations
like addition and multiplication. Most of the operators in C++ do exactly what
you would expect them to do, because they are common mathematical symbols.
For example, the operator for adding two integers is +.

The following are all legal C++ expressions whose meaning is more or less
obvious:

1+1 hour-1 hour*60 + minute minute/60

Expressions can contain both variables names and integer values. In each case
the name of the variable is replaced with its value before the computation is
performed.

Addition, subtraction and multiplication all do what you expect, but you
might be surprised by division. For example, the following program:

int hour, minute;

hour = 11;

minute = 59;

cout << "Number of minutes since midnight: ";

cout << hour*60 + minute << endl;

cout << "Fraction of the hour that has passed: ";

cout << minute/60 << endl;

would generate the following output:

Number of minutes since midnight: 719

Fraction of the hour that has passed: 0

The first line is what we expected, but the second line is odd. The value of the
variable minute is 59, and 59 divided by 60 is 0.98333, not 0. The reason for
the discrepancy is that C++ is performing integer division.

When both of the operands are integers (operands are the things operators
operate on), the result must also be an integer, and by definition integer division
always rounds down, even in cases like this where the next integer is so close.

A possible alternative in this case is to calculate a percentage rather than a
fraction:

cout << "Percentage of the hour that has passed: ";

cout << minute*100/60 << endl;

The result is:

Percentage of the hour that has passed: 98

Again the result is rounded down, but at least now the answer is approximately
correct. In order to get an even more accurate answer, we could use a different
type of variable, called floating-point, that is capable of storing fractional values.
We’ll get to that in the next chapter.

2.8. ORDER OF OPERATIONS 17

2.8 Order of operations

When more than one operator appears in an expression the order of evaluation
depends on the rules of precedence. A complete explanation of precedence
can get complicated, but just to get you started:

• Multiplication and division happen before addition and subtraction. So
2*3-1 yields 5, not 4, and 2/3-1 yields -1, not 1 (remember that in integer
division 2/3 is 0).

• If the operators have the same precedence they are evaluated from left
to right. So in the expression minute*100/60, the multiplication happens
first, yielding 5900/60, which in turn yields 98. If the operations had gone
from right to left, the result would be 59*1 which is 59, which is wrong.

• Any time you want to override the rules of precedence (or you are not sure
what they are) you can use parentheses. Expressions in parentheses are
evaluated first, so 2 * (3-1) is 4. You can also use parentheses to make
an expression easier to read, as in (minute * 100) / 60, even though it
doesn’t change the result.

2.9 Operators for characters

Interestingly, the same mathematical operations that work on integers also work
on characters. For example,

char letter;

letter = ’a’ + 1;

cout << letter << endl;

outputs the letter b. Although it is syntactically legal to multiply characters, it
is almost never useful to do it.

Earlier I said that you can only assign integer values to integer variables and
character values to character variables, but that is not completely true. In some
cases, C++ converts automatically between types. For example, the following
is legal.

int number;

number = ’a’;

cout << number << endl;

The result is 97, which is the number that is used internally by C++ to represent
the letter ’a’. However, it is generally a good idea to treat characters as
characters, and integers as integers, and only convert from one to the other if
there is a good reason.

Automatic type conversion is an example of a common problem in designing
a programming language, which is that there is a conflict between formalism,

18 CHAPTER 2. VARIABLES AND TYPES

which is the requirement that formal languages should have simple rules with
few exceptions, and convenience, which is the requirement that programming
languages be easy to use in practice.

More often than not, convenience wins, which is usually good for expert
programmers, who are spared from rigorous but unwieldy formalism, but bad
for beginning programmers, who are often baffled by the complexity of the rules
and the number of exceptions. In this book I have tried to simplify things by
emphasizing the rules and omitting many of the exceptions.

2.10 Composition

So far we have looked at the elements of a programming language—variables,
expressions, and statements—in isolation, without talking about how to combine
them.

One of the most useful features of programming languages is their ability to
take small building blocks and compose them. For example, we know how to
multiply integers and we know how to output values; it turns out we can do
both at the same time:

cout << 17 * 3;

Actually, I shouldn’t say “at the same time,” since in reality the multiplication
has to happen before the output, but the point is that any expression, involving
numbers, characters, and variables, can be used inside an output statement.
We’ve already seen one example:

cout << hour*60 + minute << endl;

You can also put arbitrary expressions on the right-hand side of an assignment
statement:

int percentage;

percentage = (minute * 100) / 60;

This ability may not seem so impressive now, but we will see other examples
where composition makes it possible to express complex computations neatly
and concisely.

WARNING: There are limits on where you can use certain expressions; most
notably, the left-hand side of an assignment statement has to be a variable name,
not an expression. That’s because the left side indicates the storage location
where the result will go. Expressions do not represent storage locations, only
values. So the following is illegal: minute+1 = hour;.

2.11 Glossary

variable: A named storage location for values. All variables have a type, which
determines which values it can store.

2.11. GLOSSARY 19

value: A letter, or number, or other thing that can be stored in a variable.

type: A set of values. The types we have seen are integers (int in C++) and
characters (char in C++).

keyword: A reserved word that is used by the compiler to parse programs.
Examples we have seen include int, void and endl.

statement: A line of code that represents a command or action. So far, the
statements we have seen are declarations, assignments, and output state-
ments.

declaration: A statement that creates a new variable and determines its type.

assignment: A statement that assigns a value to a variable.

expression: A combination of variables, operators and values that represents
a single result value. Expressions also have types, as determined by their
operators and operands.

operator: A special symbol that represents a simple computation like addition
or multiplication.

operand: One of the values on which an operator operates.

precedence: The order in which operations are evaluated.

composition: The ability to combine simple expressions and statements into
compound statements and expressions in order to represent complex com-
putations concisely.

20 CHAPTER 2. VARIABLES AND TYPES

Chapter 3

Function

3.1 Floating-point

In the last chapter we had some problems dealing with numbers that were not
integers. We worked around the problem by measuring percentages instead of
fractions, but a more general solution is to use floating-point numbers, which
can represent fractions as well as integers. In C++, there are two floating-point
types, called float and double. In this book we will use doubles exclusively.

You can create floating-point variables and assign values to them using the
same syntax we used for the other types. For example:

double pi;

pi = 3.14159;

It is also legal to declare a variable and assign a value to it at the same time:

int x = 1;

String empty = "";

double pi = 3.14159;

In fact, this syntax is quite common. A combined declaration and assignment
is sometimes called an initialization.

Although floating-point numbers are useful, they are often a source of con-
fusion because there seems to be an overlap between integers and floating-point
numbers. For example, if you have the value 1, is that an integer, a floating-
point number, or both?

Strictly speaking, C++ distinguishes the integer value 1 from the floating-
point value 1.0, even though they seem to be the same number. They belong to
different types, and strictly speaking, you are not allowed to make assignments
between types. For example, the following is illegal

int x = 1.1;

21

22 CHAPTER 3. FUNCTION

because the variable on the left is an int and the value on the right is a double.
But it is easy to forget this rule, especially because there are places where C++
automatically converts from one type to another. For example,

double y = 1;

should technically not be legal, but C++ allows it by converting the int to a
double automatically. This leniency is convenient, but it can cause problems;
for example:

double y = 1 / 3;

You might expect the variable y to be given the value 0.333333, which is a legal
floating-point value, but in fact it will get the value 0.0. The reason is that the
expression on the right appears to be the ratio of two integers, so C++ does
integer division, which yields the integer value 0. Converted to floating-point,
the result is 0.0.

One way to solve this problem (once you figure out what it is) is to make
the right-hand side a floating-point expression:

double y = 1.0 / 3.0;

This sets y to 0.333333, as expected.
All the operations we have seen—addition, subtraction, multiplication, and

division—work on floating-point values, although you might be interested to
know that the underlying mechanism is completely different. In fact, most
processors have special hardware just for performing floating-point operations.

3.2 Converting from double to int

As I mentioned, C++ converts ints to doubles automatically if necessary, be-
cause no information is lost in the translation. On the other hand, going from
a double to an int requires rounding off. C++ doesn’t perform this operation
automatically, in order to make sure that you, as the programmer, are aware of
the loss of the fractional part of the number.

The simplest way to convert a floating-point value to an integer is to use a
typecast. Typecasting is so called because it allows you to take a value that
belongs to one type and “cast” it into another type (in the sense of molding or
reforming, not throwing).

The syntax for typecasting is like the syntax for a function call. For example:

double pi = 3.14159;

int x = int (pi);

The int function returns an integer, so x gets the value 3. Converting to an
integer always rounds down, even if the fraction part is 0.99999999.

For every type in C++, there is a corresponding function that typecasts its
argument to the appropriate type.

3.3. MATH FUNCTIONS 23

3.3 Math functions

In mathematics, you have probably seen functions like sin and log, and you have
learned to evaluate expressions like sin(π/2) and log(1/x). First, you evaluate
the expression in parentheses, which is called the argument of the function.
For example, π/2 is approximately 1.571, and 1/x is 0.1 (if x happens to be 10).

Then you can evaluate the function itself, either by looking it up in a table
or by performing various computations. The sin of 1.571 is 1, and the log of 0.1
is -1 (assuming that log indicates the logarithm base 10).

This process can be applied repeatedly to evaluate more complicated ex-
pressions like log(1/ sin(π/2)). First we evaluate the argument of the innermost
function, then evaluate the function, and so on.

C++ provides a set of built-in functions that includes most of the mathe-
matical operations you can think of. The math functions are invoked using a
syntax that is similar to mathematical notation:

double log = log (17.0);

double angle = 1.5;

double height = sin (angle);

The first example sets log to the logarithm of 17, base e. There is also a function
called log10 that takes logarithms base 10.

The second example finds the sine of the value of the variable angle. C++
assumes that the values you use with sin and the other trigonometric functions
(cos, tan) are in radians. To convert from degrees to radians, you can divide
by 360 and multiply by 2π.

If you don’t happen to know π to 15 digits, you can calculate it using the
acos function. The arccosine (or inverse cosine) of -1 is π, because the cosine
of π is -1.

double pi = acos(-1.0);

double degrees = 90;

double angle = degrees * 2 * pi / 360.0;

Before you can use any of the math functions, you have to include the math
header file. Header files contain information the compiler needs about func-
tions that are defined outside your program. For example, in the “Hello, world!”
program we included a header file named iostream.h using an include state-
ment:

#include <iostream.h>

iostream.h contains information about input and output (I/O) streams, in-
cluding the object named cout.

Similarly, the math header file contains information about the math func-
tions. You can include it at the beginning of your program along with
iostream.h:

#include <math.h>

24 CHAPTER 3. FUNCTION

3.4 Composition

Just as with mathematical functions, C++ functions can be composed, mean-
ing that you use one expression as part of another. For example, you can use
any expression as an argument to a function:

double x = cos (angle + pi/2);

This statement takes the value of pi, divides it by two and adds the result to
the value of angle. The sum is then passed as an argument to the cos function.

You can also take the result of one function and pass it as an argument to
another:

double x = exp (log (10.0));

This statement finds the log base e of 10 and then raises e to that power. The
result gets assigned to x; I hope you know what it is.

3.5 Adding new functions

So far we have only been using the functions that are built into C++, but it is
also possible to add new functions. Actually, we have already seen one function
definition: main. The function named main is special because it indicates where
the execution of the program begins, but the syntax for main is the same as for
any other function definition:

void NAME (LIST OF PARAMETERS) {

STATEMENTS

}

You can make up any name you want for your function, except that you can’t
call it main or any other C++ keyword. The list of parameters specifies what
information, if any, you have to provide in order to use (or call) the new function.

main doesn’t take any parameters, as indicated by the empty parentheses ()
in it’s definition. The first couple of functions we are going to write also have
no parameters, so the syntax looks like this:

void newLine () {

cout << endl;

}

This function is named newLine; it contains only a single statement, which
outputs a newline character, represented by the special value endl.

In main we can call this new function using syntax that is similar to the way
we call the built-in C++ commands:

3.5. ADDING NEW FUNCTIONS 25

void main ()

{

cout << "First Line." << endl;

newLine ();

cout << "Second Line." << endl;

}

The output of this program is

First line.

Second line.

Notice the extra space between the two lines. What if we wanted more space
between the lines? We could call the same function repeatedly:

void main ()

{

cout << "First Line." << endl;

newLine ();

newLine ();

newLine ();

cout << "Second Line." << endl;

}

Or we could write a new function, named threeLine, that prints three new
lines:

void threeLine ()

{

newLine (); newLine (); newLine ();

}

void main ()

{

cout << "First Line." << endl;

threeLine ();

cout << "Second Line." << endl;

}

You should notice a few things about this program:

• You can call the same procedure repeatedly. In fact, it is quite common
and useful to do so.

• You can have one function call another function. In this case, main calls
threeLine and threeLine calls newLine. Again, this is common and
useful.

26 CHAPTER 3. FUNCTION

• In threeLine I wrote three statements all on the same line, which is syn-
tactically legal (remember that spaces and new lines usually don’t change
the meaning of a program). On the other hand, it is usually a better idea
to put each statement on a line by itself, to make your program easy to
read. I sometimes break that rule in this book to save space.

So far, it may not be clear why it is worth the trouble to create all these new
functions. Actually, there are a lot of reasons, but this example only demon-
strates two:

1. Creating a new function gives you an opportunity to give a name to a group
of statements. Functions can simplify a program by hiding a complex
computation behind a single command, and by using English words in
place of arcane code. Which is clearer, newLine or cout << endl?

2. Creating a new function can make a program smaller by eliminating repet-
itive code. For example, a short way to print nine consecutive new lines
is to call threeLine three times. How would you print 27 new lines?

3.6 Definitions and uses

Pulling together all the code fragments from the previous section, the whole
program looks like this:

#include <iostream.h>

void newLine ()

{

cout << endl;

}

void threeLine ()

{

newLine (); newLine (); newLine ();

}

void main ()

{

cout << "First Line." << endl;

threeLine ();

cout << "Second Line." << endl;

}

This program contains three function definitions: newLine, threeLine, and
main.

3.7. PROGRAMS WITH MULTIPLE FUNCTIONS 27

Inside the definition of main, there is a statement that uses or calls
threeLine. Similarly, threeLine calls newLine three times. Notice that the
definition of each function appears above the place where it is used.

This is necessary in C++; the definition of a function must appear before
(above) the first use of the function. You should try compiling this program
with the functions in a different order and see what error messages you get.

3.7 Programs with multiple functions

When you look at a class definition that contains several functions, it is tempting
to read it from top to bottom, but that is likely to be confusing, because that
is not the order of execution of the program.

Execution always begins at the first statement of main, regardless of where
it is in the program (often it is at the bottom). Statements are executed one at
a time, in order, until you reach a function call. Function calls are like a detour
in the flow of execution. Instead of going to the next statement, you go to the
first line of the called function, execute all the statements there, and then come
back and pick up again where you left off.

That sounds simple enough, except that you have to remember that one func-
tion can call another. Thus, while we are in the middle of main, we might have
to go off and execute the statements in threeLine. But while we are executing
threeLine, we get interrupted three times to go off and execute newLine.

Fortunately, C++ is adept at keeping track of where it is, so each time
newLine completes, the program picks up where it left off in threeLine, and
eventually gets back to main so the program can terminate.

What’s the moral of this sordid tale? When you read a program, don’t read
from top to bottom. Instead, follow the flow of execution.

3.8 Parameters and arguments

Some of the built-in functions we have used have parameters, which are values
that you provide to let the function do its job. For example, if you want to find
the sine of a number, you have to indicate what the number is. Thus, sin takes
a double value as a parameter.

Some functions take more than one parameter, like pow, which takes two
doubles, the base and the exponent.

Notice that in each of these cases we have to specify not only how many
parameters there are, but also what type they are. So it shouldn’t surprise you
that when you write a class definition, the parameter list indicates the type of
each parameter. For example:

void printTwice (char phil) {

cout << phil << phil << endl;

}

28 CHAPTER 3. FUNCTION

This function takes a single parameter, named phil, that has type char. What-
ever that parameter is (and at this point we have no idea what it is), it gets
printed twice, followed by a newline. I chose the name phil to suggest that
the name you give a parameter is up to you, but in general you want to choose
something more illustrative than phil.

In order to call this function, we have to provide a char. For example, we
might have a main function like this:

void main () {

printTwice (’a’);

}

The char value you provide is called an argument, and we say that the ar-
gument is passed to the function. In this case the value ’a’ is passed as an
argument to printTwice where it will get printed twice.

Alternatively, if we had a char variable, we could use it as an argument
instead:

void main () {

char argument = ’b’;

printTwice (argument);

}

Notice something very important here: the name of the variable we pass as an
argument (argument) has nothing to do with the name of the parameter (phil).
Let me say that again:

The name of the variable we pass as an argument has noth-
ing to do with the name of the parameter.

They can be the same or they can be different, but it is important to realize
that they are not the same thing, except that they happen to have the same
value (in this case the character ’b’).

The value you provide as an argument must have the same type as the
parameter of the function you call. This rule is important, but it is sometimes
confusing because C++ sometimes converts arguments from one type to another
automatically. For now you should learn the general rule, and we will deal with
exceptions later.

3.9 Parameters and variables are local

Parameters and variables only exist inside their own functions. Within the
confines of main, there is no such thing as phil. If you try to use it, the
compiler will complain. Similarly, inside printTwice there is no such thing as
argument.

Variables like this are said to be local. In order to keep track of parameters
and local variables, it is useful to draw a stack diagram. Like state diagrams,

3.10. FUNCTIONS WITH MULTIPLE PARAMETERS 29

stack diagrams show the value of each variable, but the variables are contained
in larger boxes that indicate which function they belong to.

For example, the state diagram for printTwice looks like this:

’b’ main

phil

’b’

argument

printTwice

Whenever a function is called, it creates a new instance of that function.
Each instance of a function contains the parameters and local variables for that
function. In the diagram an instance of a function is represented by a box with
the name of the function on the outside and the variables and parameters inside.

In the example, main has one local variable, argument, and no parameters.
printTwice has no local variables and one parameter, named phil.

3.10 Functions with multiple parameters

The syntax for declaring and invoking functions with multiple parameters is a
common source of errors. First, remember that you have to declare the type of
every parameter. For example

void printTime (int hour, int minute) {

cout << hour;

cout << ":";

cout << minute;

}

It might be tempting to write (int hour, minute), but that format is only
legal for variable declarations, not for parameters.

Another common source of confusion is that you do not have to declare the
types of arguments. The following is wrong!

int hour = 11;

int minute = 59;

printTime (int hour, int minute); // WRONG!

30 CHAPTER 3. FUNCTION

In this case, the compiler can tell the type of hour and minute by looking at
their declarations. It is unnecessary and illegal to include the type when you
pass them as arguments. The correct syntax is printTime (hour, minute).

3.11 Functions with results

You might have noticed by now that some of the functions we are using, like the
math functions, yield results. Other functions, like newLine, perform an action
but don’t return a value. That raises some questions:

• What happens if you call a function and you don’t do anything with the
result (i.e. you don’t assign it to a variable or use it as part of a larger
expression)?

• What happens if you use a function without a result as part of an expres-
sion, like newLine() + 7?

• Can we write functions that yield results, or are we stuck with things like
newLine and printTwice?

The answer to the third question is “yes, you can write functions that return
values,” and we’ll do it in a couple of chapters. I will leave it up to you to answer
the other two questions by trying them out. Any time you have a question about
what is legal or illegal in C++, a good way to find out is to ask the compiler.

3.12 Glossary

floating-point: A type of variable (or value) that can contain fractions as well
as integers. There are a few floating-point types in C++; the one we use
in this book is double.

initialization: A statement that declares a new variable and assigns a value
to it at the same time.

function: A named sequence of statements that performs some useful function.
Functions may or may not take parameters, and may or may not produce
a result.

parameter: A piece of information you provide in order to call a function.
Parameters are like variables in the sense that they contain values and
have types.

argument: A value that you provide when you call a function. This value must
have the same type as the corresponding parameter.

call: Cause a function to be executed.

Chapter 4

Conditionals and recursion

4.1 The modulus operator

The modulus operator works on integers (and integer expressions) and yields
the remainder when the first operand is divided by the second. In C++, the
modulus operator is a percent sign, %. The syntax is exactly the same as for
other operators:

int quotient = 7 / 3;

int remainder = 7 % 3;

The first operator, integer division, yields 2. The second operator yields 1.
Thus, 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you
can check whether one number is divisible by another: if x % y is zero, then x

is divisible by y.
Also, you can use the modulus operator to extract the rightmost digit or

digits from a number. For example, x % 10 yields the rightmost digit of x (in
base 10). Similarly x % 100 yields the last two digits.

4.2 Conditional execution

In order to write useful programs, we almost always need the ability to check
certain conditions and change the behavior of the program accordingly. Condi-
tional statements give us this ability. The simplest form is the if statement:

if (x > 0) {

cout << "x is positive" << endl;

}

The expression in parentheses is called the condition. If it is true, then the
statements in brackets get executed. If the condition is not true, nothing hap-
pens.

31

32 CHAPTER 4. CONDITIONALS AND RECURSION

The condition can contain any of the comparison operators:

x == y // x equals y

x != y // x is not equal to y

x > y // x is greater than y

x < y // x is less than y

x >= y // x is greater than or equal to y

x <= y // x is less than or equal to y

Although these operations are probably familiar to you, the syntax C++ uses is
a little different from mathematical symbols like =, 6= and ≤. A common error
is to use a single = instead of a double ==. Remember that = is the assignment
operator, and == is a comparison operator. Also, there is no such thing as =<

or =>.
The two sides of a condition operator have to be the same type. You can

only compare ints to ints and doubles to doubles. Unfortunately, at this
point you can’t compare Strings at all! There is a way to compare Strings,
but we won’t get to it for a couple of chapters.

4.3 Alternative execution

A second form of conditional execution is alternative execution, in which there
are two possibilities, and the condition determines which one gets executed. The
syntax looks like:

if (x%2 == 0) {

cout << "x is even" << endl;

} else {

cout << "x is odd" << endl;

}

If the remainder when x is divided by 2 is zero, then we know that x is even,
and this code displays a message to that effect. If the condition is false, the
second set of statements is executed. Since the condition must be true or false,
exactly one of the alternatives will be executed.

As an aside, if you think you might want to check the parity (evenness or
oddness) of numbers often, you might want to “wrap” this code up in a function,
as follows:

void printParity (int x) {

if (x%2 == 0) {

cout << "x is even" << endl;

} else {

cout << "x is odd" << endl;

}

}

4.4. CHAINED CONDITIONALS 33

Now you have a function named printParity that will display an appropriate
message for any integer you care to provide. In main you would call this function
as follows:

printParity (17);

Always remember that when you call a function, you do not have to declare the
types of the arguments you provide. C++ can figure out what type they are.
You should resist the temptation to write things like:

int number = 17;

printParity (int number); // WRONG!!!

4.4 Chained conditionals

Sometimes you want to check for a number of related conditions and choose one
of several actions. One way to do this is by chaining a series of ifs and elses:

if (x > 0) {

cout << "x is positive" << endl;

} else if (x < 0) {

cout << "x is negative" << endl;

} else {

cout << "x is zero" << endl;

}

These chains can be as long as you want, although they can be difficult to read
if they get out of hand. One way to make them easier to read is to use standard
indentation, as demonstrated in these examples. If you keep all the statements
and squiggly-braces lined up, you are less likely to make syntax errors and you
can find them more quickly if you do.

4.5 Nested conditionals

In addition to chaining, you can also nest one conditional within another. We
could have written the previous example as:

if (x == 0) {

cout << "x is zero" << endl;

} else {

if (x > 0) {

cout << "x is positive" << endl;

} else {

cout << "x is negative" << endl;

}

}

34 CHAPTER 4. CONDITIONALS AND RECURSION

There is now an outer conditional that contains two branches. The first branch
contains a simple output statement, but the second branch contains another if
statement, which has two branches of its own. Fortunately, those two branches
are both output statements, although they could have been conditional state-
ments as well.

Notice again that indentation helps make the structure apparent, but nev-
ertheless, nested conditionals get difficult to read very quickly. In general, it is
a good idea to avoid them when you can.

On the other hand, this kind of nested structure is common, and we will
see it again, so you better get used to it.

4.6 The return statement

The return statement allows you to terminate the execution of a function before
you reach the end. One reason to use it is if you detect an error condition:

#include <math.h>

void printLogarithm (double x) {

if (x <= 0.0) {

cout << "Positive numbers only, please." << endl;

return;

}

double result = log (x);

cout << "The log of x is " << result);

}

This defines a function named printLogarithm that takes a double named x

as a parameter. The first thing it does is check whether x is less than or equal
to zero, in which case it displays an error message and then uses return to exit
the function. The flow of execution immediately returns to the caller and the
remaining lines of the function are not executed.

I used a floating-point value on the right side of the condition because there
is a floating-point variable on the left.

Remember that any time you want to use one a function from the math
library, you have to include the header file math.h.

4.7 Recursion

I mentioned in the last chapter that it is legal for one function to call another,
and we have seen several examples of that. I neglected to mention that it is
also legal for a function to call itself. It may not be obvious why that is a good
thing, but it turns out to be one of the most magical and interesting things a
program can do.

4.7. RECURSION 35

For example, look at the following function:

void countdown (int n) {

if (n == 0) {

cout << "Blastoff!" << endl;

} else {

cout << n << endl;

countdown (n-1);

}

}

The name of the function is countdown and it takes a single integer as a pa-
rameter. If the parameter is zero, it outputs the word “Blastoff.” Otherwise,
it outputs the parameter and then calls a function named countdown—itself—
passing n-1 as an argument.

What happens if we call this function like this:

void main ()

{

countdown (3);

}

The execution of countdown begins with n=3, and since n is not zero, it outputs
the value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is not zero,
it outputs the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n

is not zero, it outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and
since n is zero, it outputs the word “Blastoff!”
and then returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.
And then you’re back in main (what a trip). So the total output looks like:

3

2

1

Blastoff!

As a second example, let’s look again at the functions newLine and threeLine.

36 CHAPTER 4. CONDITIONALS AND RECURSION

void newLine () {

cout << endl;

}

void threeLine () {

newLine (); newLine (); newLine ();

}

Although these work, they would not be much help if I wanted to output 2
newlines, or 106. A better alternative would be

void nLines (int n) {

if (n > 0) {

cout << endl;

nLines (n-1);

}

}

This program is similar to countdown; as long as n is greater than zero, it
outputs one newline, and then calls itself to output n-1 additional newlines.
Thus, the total number of newlines is 1 + (n-1), which usually comes out to
roughly n.

The process of a function calling itself is called recursion, and such functions
are said to be recursive.

4.8 Infinite recursion

In the examples in the previous section, notice that each time the functions
get called recursively, the argument gets smaller by one, so eventually it gets
to zero. When the argument is zero, the function returns immediately, without

making any recursive calls. This case—when the function completes without
making a recursive call—is called the base case.

If a recursion never reaches a base case, it will go on making recursive calls
forever and the program will never terminate. This is known as infinite re-
cursion, and it is generally not considered a good idea.

In most programming environments, a program with an infinite recursion
will not really run forever. Eventually, something will break and the program
will report an error. This is the first example we have seen of a run-time error
(an error that does not appear until you run the program).

You should write a small program that recurses forever and run it to see
what happens.

4.9 Stack diagrams for recursive functions

In the previous chapter we used a stack diagram to represent the state of a
program during a function call. The same kind of diagram can make it easier

4.10. GLOSSARY 37

to interpret a recursive function.
Remember that every time a function gets called it creates a new instance

that contains the function’s local variables and parameters.
This figure shows a stack diagram for countdown, called with n = 3:

n: 3

n:

n:

n:

2

1

0

main

countdown

countdown

countdown

countdown

There is one instance of main and four instances of countdown, each with a
different value for the parameter n. The bottom of the stack, countdown with
n=0 is the base case. It does not make a recursive call, so there are no more
instances of countdown.

The instance of main is empty because main does not have any parameters
or local variables. As an exercise, draw a stack diagram for nLines, invoked
with the parameter n=4.

4.10 Glossary

modulus: An operator that works on integers and yields the remainder when
one number is divided by another. In C++ it is denoted with a percent
sign (%).

conditional: A block of statements that may or may not be executed depend-
ing on some condition.

chaining: A way of joining several conditional statements in sequence.

nesting: Putting a conditional statement inside one or both branches of an-
other conditional statement.

recursion: The process of calling the same function you are currently execut-
ing.

infinite recursion: A function that calls itself recursively without every reach-
ing the base case. Eventually an infinite recursion will cause a run-time
error.

38 CHAPTER 4. CONDITIONALS AND RECURSION

Chapter 5

Fruitful functions

5.1 Return values

Some of the built-in functions we have used, like the math functions, have
produced results. That is, the effect of calling the function is to generate a new
value, which we usually assign to a variable or use as part of an expression. For
example:

double e = exp (1.0);

double height = radius * sin (angle);

But so far all the functions we have written have been void functions; that is,
functions that return no value. When you call a void function, it is typically on
a line by itself, with no assignment:

nLines (3);

countdown (n-1);

In this chapter, we are going to write functions that return things, which I will
refer to as fruitful functions, for want of a better name. The first example is
area, which takes a double as a parameter, and returns the area of a circle with
the given radius:

double area (double radius) {

double pi = acos (-1.0);

double area = pi * radius * radius;

return area;

}

The first thing you should notice is that the beginning of the function definition
is different. Instead of void, which indicates a void function, we see double,
which indicates that the return value from this function will have type double.

39

40 CHAPTER 5. FRUITFUL FUNCTIONS

Also, notice that the last line is an alternate form of the return statement
that includes a return value. This statement means, “return immediately from
this function and use the following expression as a return value.” The expres-
sion you provide can be arbitrarily complicated, so we could have written this
function more concisely:

double area (double radius) {

return acos(-1.0) * radius * radius;

}

On the other hand, temporary variables like area often make debugging easier.
In either case, the type of the expression in the return statement must match
the return type of the function. In other words, when you declare that the return
type is double, you are making a promise that this function will eventually
produce a double. If you try to return with no expression, or an expression
with the wrong type, the compiler will take you to task.

Sometimes it is useful to have multiple return statements, one in each branch
of a conditional:

double absoluteValue (double x) {

if (x < 0) {

return -x;

} else {

return x;

}

}

Since these returns statements are in an alternative conditional, only one will
be executed. Although it is legal to have more than one return statement in a
function, you should keep in mind that as soon as one is executed, the function
terminates without executing any subsequent statements.

Code that appears after a return statement, or any place else where it can
never be executed, is called dead code. Some compilers warn you if part of
your code is dead.

If you put return statements inside a conditional, then you have to guarantee
that every possible path through the program hits a return statement. For
example:

double absoluteValue (double x) {

if (x < 0) {

return -x;

} else if (x > 0) {

return x;

} // WRONG!!

}

5.2. PROGRAM DEVELOPMENT 41

This program is not correct because if x happens to be 0, then neither condition
will be true and the function will end without hitting a return statement. Unfor-
tunately, many C++ compilers do not catch this error. As a result, the program
may compile and run, but the return value when x==0 could be anything, and
will probably be different in different environments.

By now you are probably sick of seeing compiler errors, but as you gain more
experience, you will realize that the only thing worse than getting a compiler
error is not getting a compiler error when your program is wrong.

Here’s the kind of thing that’s likely to happen: you test absoluteValue

with several values of x and it seems to work correctly. Then you give your
program to someone else and they run it in another environment. It fails in some
mysterious way, and it takes days of debugging to discover that the problem is an
incorrect implementation of absoluteValue. If only the compiler had warned
you!

From now on, if the compiler points out an error in your program, you should
not blame the compiler. Rather, you should thank the compiler for finding your
error and sparing you days of debugging. Some compilers have an option that
tells them to be extra strict and report all the errors they can find. You should
turn this option on all the time.

As an aside, you should know that there is a function in the math library
called fabs that calculates the absolute value of a double—correctly.

5.2 Program development

At this point you should be able to look at complete C++ functions and tell
what they do. But it may not be clear yet how to go about writing them. I am
going to suggest one technique that I call incremental development.

As an example, imagine you want to find the distance between two points,
given by the coordinates (x1, y1) and (x2, y2). By the usual definition,

distance =
√

(x2 − x1)2 + (y2 − y1)2 (5.1)

The first step is to consider what a distance function should look like in C++.
In other words, what are the inputs (parameters) and what is the output (return
value).

In this case, the two points are the parameters, and it is natural to represent
them using four doubles. The return value is the distance, which will have type
double.

Already we can write an outline of the function:

double distance (double x1, double y1, double x2, double y2) {

return 0.0;

}

The return statement is a placekeeper so that the function will compile and
return something, even though it is not the right answer. At this stage the

42 CHAPTER 5. FRUITFUL FUNCTIONS

function doesn’t do anything useful, but it is worthwhile to try compiling it so
we can identify any syntax errors before we make it more complicated.

In order to test the new function, we have to call it with sample values.
Somewhere in main I would add:

double dist = distance (1.0, 2.0, 4.0, 6.0);

cout << dist << endl;

I chose these values so that the horizontal distance is 3 and the vertical distance
is 4; that way, the result will be 5 (the hypotenuse of a 3-4-5 triangle). When
you are testing a function, it is useful to know the right answer.

Once we have checked the syntax of the function definition, we can start
adding lines of code one at a time. After each incremental change, we recompile
and run the program. That way, at any point we know exactly where the error
must be—in the last line we added.

The next step in the computation is to find the differences x2−x1 and y2−y1.
I will store those values in temporary variables named dx and dy.

double distance (double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

cout << "dx is " << dx << endl;

cout << "dy is " << dy << endl;

return 0.0;

}

I added output statements that will let me check the intermediate values before
proceeding. As I mentioned, I already know that they should be 3.0 and 4.0.

When the function is finished I will remove the output statements. Code
like that is called scaffolding, because it is helpful for building the program,
but it is not part of the final product. Sometimes it is a good idea to keep the
scaffolding around, but comment it out, just in case you need it later.

The next step in the development is to square dx and dy. We could use the
pow function, but it is simpler and faster to just multiply each term by itself.

double distance (double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

double dsquared = dx*dx + dy*dy;

cout << "dsquared is " << dsquared;

return 0.0;

}

Again, I would compile and run the program at this stage and check the inter-
mediate value (which should be 25.0).

Finally, we can use the sqrt function to compute and return the result.

5.3. COMPOSITION 43

double distance (double x1, double y1, double x2, double y2) {

double dx = x2 - x1;

double dy = y2 - y1;

double dsquared = dx*dx + dy*dy;

double result = sqrt (dsquared);

return result;

}

Then in main, we should output and check the value of the result.
As you gain more experience programming, you might find yourself writing

and debugging more than one line at a time. Nevertheless, this incremental
development process can save you a lot of debugging time.

The key aspects of the process are:

• Start with a working program and make small, incremental changes. At
any point, if there is an error, you will know exactly where it is.

• Use temporary variables to hold intermediate values so you can output
and check them.

• Once the program is working, you might want to remove some of the
scaffolding or consolidate multiple statements into compound expressions,
but only if it does not make the program difficult to read.

5.3 Composition

As you should expect by now, once you define a new function, you can use it as
part of an expression, and you can build new functions using existing functions.
For example, what if someone gave you two points, the center of the circle and
a point on the perimeter, and asked for the area of the circle?

Let’s say the center point is stored in the variables xc and yc, and the
perimeter point is in xp and yp. The first step is to find the radius of the circle,
which is the distance between the two points. Fortunately, we have a function,
distance, that does that.

double radius = distance (xc, yc, xp, yp);

The second step is to find the area of a circle with that radius, and return it.

double result = area (radius);

return result;

Wrapping that all up in a function, we get:

double fred (double xc, double yc, double xp, double yp) {

double radius = distance (xc, yc, xp, yp);

double result = area (radius);

return result;

}

44 CHAPTER 5. FRUITFUL FUNCTIONS

The name of this function is fred, which may seem odd. I will explain why in
the next section.

The temporary variables radius and area are useful for development and
debugging, but once the program is working we can make it more concise by
composing the function calls:

double fred (double xc, double yc, double xp, double yp) {

return area (distance (xc, yc, xp, yp));

}

5.4 Overloading

In the previous section you might have noticed that fred and area perform
similar functions—finding the area of a circle—but take different parameters.
For area, we have to provide the radius; for fred we provide two points.

If two functions do the same thing, it is natural to give them the same name.
In other words, it would make more sense if fred were called area.

Having more than one function with the same name, which is called over-
loading, is legal in C++ as long as each version takes different parameters. So
we can go ahead and rename fred:

double area (double xc, double yc, double xp, double yp) {

return area (distance (xc, yc, xp, yp));

}

This looks like a recursive function, but it is not. Actually, this version of area
is calling the other version. When you call an overloaded function, C++ knows
which version you want by looking at the arguments that you provide. If you
write:

double x = area (3.0);

C++ goes looking for a function named area that takes a double as an argu-
ment, and so it uses the first version. If you write

double x = area (1.0, 2.0, 4.0, 6.0);

C++ uses the second version of area.
Many of the built-in C++ commands are overloaded, meaning that there

are different versions that accept different numbers or types of parameters.
Although overloading is a useful feature, it should be used with caution. You

might get yourself nicely confused if you are trying to debug one version of a
function while accidently calling a different one.

Actually, that reminds me of one of the cardinal rules of debugging: make
sure that the version of the program you are looking at is the version
of the program that is running! Some time you may find yourself making
one change after another in your program, and seeing the same thing every time

5.5. BOOLEAN VALUES 45

you run it. This is a warning sign that for one reason or another you are not
running the version of the program you think you are. To check, stick in an
output statement (it doesn’t matter what it says) and make sure the behavior
of the program changes accordingly.

5.5 Boolean values

The types we have seen so far are pretty big. There are a lot of integers in
the world, and even more floating-point numbers. By comparison, the set of
characters is pretty small. Well, there is another type in C++ that is even
smaller. It is called boolean, and the only values in it are true and false.

Without thinking about it, we have been using boolean values for the last
couple of chapters. The condition inside an if statement or a while statement
is a boolean expression. Also, the result of a comparison operator is a boolean
value. For example:

if (x == 5) {

// do something

}

The operator == compares two integers and produces a boolean value.
The values true and false are keywords in C++, and can be used anywhere

a boolean expression is called for. For example,

while (true) {

// loop forever

}

is a standard idiom for a loop that should run forever (or until it reaches a
return or break statement).

5.6 Boolean variables

As usual, for every type of value, there is a corresponding type of variable. In
C++ the boolean type is called bool. Boolean variables work just like the other
types:

bool fred;

fred = true;

bool testResult = false;

The first line is a simple variable declaration; the second line is an assignment,
and the third line is a combination of a declaration and as assignment, called
an initialization.

As I mentioned, the result of a comparison operator is a boolean, so you can
store it in a bool variable

46 CHAPTER 5. FRUITFUL FUNCTIONS

bool evenFlag = (n%2 == 0); // true if n is even

bool positiveFlag = (x > 0); // true if x is positive

and then use it as part of a conditional statement later

if (evenFlag) {

cout << "n was even when I checked it" << endl;

}

A variable used in this way is called a flag, since it flags the presence or absence
of some condition.

5.7 Logical operators

There are three logical operators in C++: AND, OR and NOT, which are
denoted by the symbols &&, || and !. The semantics (meaning) of these oper-
ators is similar to their meaning in English. For example x > 0 && x < 10 is
true only if x is greater than zero AND less than 10.

evenFlag || n%3 == 0 is true if either of the conditions is true, that is, if
evenFlag is true OR the number is divisible by 3.

Finally, the NOT operator has the effect of negating or inverting a bool
expression, so !evenFlag is true if evenFlag is false; that is, if the number is
odd.

Logical operators often provide a way to simplify nested conditional state-
ments. For example, how would you write the following code using a single
conditional?

if (x > 0) {

if (x < 10) {

cout << "x is a positive single digit." << endl;

}

}

5.8 Bool functions

Functions can return bool values just like any other type, which is often con-
venient for hiding complicated tests inside functions. For example:

bool isSingleDigit (int x)

{

if (x >= 0 && x < 10) {

return true;

} else {

return false;

}

}

5.9. RETURNING FROM MAIN 47

The name of this function is isSingleDigit. It is common to give boolean
functions names that sound like yes/no questions. The return type is bool,
which means that every return statement has to provide a bool expression.

The code itself is straightforward, although it is a bit longer than it needs
to be. Remember that the expression x >= 0 && x < 10 has type bool, so
there is nothing wrong with returning it directly, and avoiding the if statement
altogether:

bool isSingleDigit (int x)

{

return (x >= 0 && x < 10);

}

In main you can call this function in the usual ways:

cout << isSingleDigit (2) << endl;

bool bigFlag = !isSingleDigit (17);

The first line outputs the value true because 2 is a single-digit number. Un-
fortunately, when C++ outputs bools, it does not display the words true and
false, but rather the integers 1 and 0.1

The second line assigns the value true to bigFlag only if 17 is not a single-
digit number.

The most common use of bool functions is inside conditional statements

if (isSingleDigit (x)) {

cout << "x is little" << endl;

} else {

cout << "x is big" << endl;

}

5.9 Returning from main

Now that we have functions that return values, I can let you in on a secret.
main is not really supposed to be a void function. It’s supposed to return an
integer:

int main ()

{

return 0;

}

The usual return value from main is 0, which indicates that the program suc-
ceeded at whatever it was supposed to to. If something goes wrong, it is common
to return -1, or some other value that indicates what kind of error occurred.

1There is a way to fix that using the boolalpha flag, but it is too hideous to mention.

48 CHAPTER 5. FRUITFUL FUNCTIONS

Of course, you might wonder who this value gets returned to, since we never
call main ourselves. It turns out that when the system executes a program,
it starts by calling main in pretty much the same way it calls all the other
functions.

There are even some parameters that are passed to main by the system, but
we are not going to deal with them for a little while.

5.10 More recursion

So far we have only learned a small subset of C++, but you might be interested
to know that this subset is now a complete programming language, by which
I mean that anything that can be computed can be expressed in this language.
Any program ever written could be rewritten using only the language features
we have used so far (actually, we would need a few commands to control devices
like the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a non-trivial exercise first accomplished by Alan Tur-
ing, one of the first computer scientists (well, some would argue that he was a
mathematician, but a lot of the early computer scientists started as mathemati-
cians). Accordingly, it is known as the Turing thesis. If you take a course on
the Theory of Computation, you will have a chance to see the proof.

To give you an idea of what you can do with the tools we have learned so
far, we’ll evaluate a few recursively-defined mathematical functions. A recursive
definition is similar to a circular definition, in the sense that the definition
contains a reference to the thing being defined. A truly circular definition is
typically not very useful:

frabjuous: an adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On
the other hand, if you looked up the definition of the mathematical function
factorial, you might get something like:

0! = 1

n! = n · (n − 1)!

(Factorial is usually denoted with the symbol !, which is not to be confused
with the C++ logical operator ! which means NOT.) This definition says that
the factorial of 0 is 1, and the factorial of any other value, n, is n multiplied by
the factorial of n − 1. So 3! is 3 times 2!, which is 2 times 1!, which is 1 times
0!. Putting it all together, we get 3! equal to 3 times 2 times 1 times 1, which
is 6.

If you can write a recursive definition of something, you can usually write a
C++ program to evaluate it. The first step is to decide what the parameters
are for this function, and what the return type is. With a little thought, you
should conclude that factorial takes an integer as a parameter and returns an
integer:

5.10. MORE RECURSION 49

int factorial (int n)

{

}

If the argument happens to be zero, all we have to do is return 1:

int factorial (int n)

{

if (n == 0) {

return 1;

}

}

Otherwise, and this is the interesting part, we have to make a recursive call to
find the factorial of n − 1, and then multiply it by n.

int factorial (int n)

{

if (n == 0) {

return 1;

} else {

int recurse = factorial (n-1);

int result = n * recurse;

return result;

}

}

If we look at the flow of execution for this program, it is similar to nLines from
the previous chapter. If we call factorial with the value 3:

Since 3 is not zero, we take the second branch and calculate the factorial of
n − 1...

Since 2 is not zero, we take the second branch and calculate the
factorial of n − 1...

Since 1 is not zero, we take the second branch and calculate
the factorial of n − 1...

Since 0 is zero, we take the first branch and re-
turn the value 1 immediately without making any
more recursive calls.

The return value (1) gets multiplied by n, which is 1, and
the result is returned.

The return value (1) gets multiplied by n, which is 2, and the result
is returned.

50 CHAPTER 5. FRUITFUL FUNCTIONS

The return value (2) gets multiplied by n, which is 3, and the result, 6, is
returned to main, or whoever called factorial (3).

Here is what the stack diagram looks like for this sequence of function calls:

3

n:

n:

n:

2

1

0
1

2

1

6

result:recurse:n:

recurse:

recurse:

result:

result:1

1 2

2 6

1

main

factorial

factorial

factorial

factorial

The return values are shown being passed back up the stack.
Notice that in the last instance of factorial, the local variables recurse

and result do not exist because when n=0 the branch that creates them does
not execute.

5.11 Leap of faith

Following the flow of execution is one way to read programs, but as you saw
in the previous section, it can quickly become labarynthine. An alternative is
what I call the “leap of faith.” When you come to a function call, instead of
following the flow of execution, you assume that the function works correctly
and returns the appropriate value.

In fact, you are already practicing this leap of faith when you use built-in
functions. When you call cos or exp, you don’t examine the implementations
of those functions. You just assume that they work, because the people who
wrote the built-in libraries were good programmers.

Well, the same is true when you call one of your own functions. For exam-
ple, in Section 5.8 we wrote a function called isSingleDigit that determines
whether a number is between 0 and 9. Once we have convinced ourselves that
this function is correct—by testing and examination of the code—we can use
the function without ever looking at the code again.

The same is true of recursive programs. When you get to the recursive call,
instead of following the flow of execution, you should assume that the recursive
call works (yields the correct result), and then ask yourself, “Assuming that I
can find the factorial of n − 1, can I compute the factorial of n?” In this case,
it is clear that you can, by multiplying by n.

Of course, it is a bit strange to assume that the function works correctly

5.12. ONE MORE EXAMPLE 51

when you have not even finished writing it, but that’s why it’s called a leap of
faith!

5.12 One more example

In the previous example I used temporary variables to spell out the steps, and
to make the code easier to debug, but I could have saved a few lines:

int factorial (int n) {

if (n == 0) {

return 1;

} else {

return n * factorial (n-1);

}

}

From now on I will tend to use the more concise version, but I recommend that
you use the more explicit version while you are developing code. When you have
it working, you can tighten it up, if you are feeling inspired.

After factorial, the classic example of a recursively-defined mathematical
function is fibonacci, which has the following definition:

fibonacci(0) = 1

fibonacci(1) = 1

fibonacci(n) = fibonacci(n − 1) + fibonacci(n − 2);

Translated into C++, this is

int fibonacci (int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return fibonacci (n-1) + fibonacci (n-2);

}

}

If you try to follow the flow of execution here, even for fairly small values of n,
your head explodes. But according to the leap of faith, if we assume that the
two recursive calls (yes, you can make two recursive calls) work correctly, then
it is clear that we get the right result by adding them together.

5.13 Glossary

return type: The type of value a function returns.

52 CHAPTER 5. FRUITFUL FUNCTIONS

return value: The value provided as the result of a function call.

dead code: Part of a program that can never be executed, often because it
appears after a return statement.

scaffolding: Code that is used during program development but is not part of
the final version.

void: A special return type that indicates a void function; that is, one that
does not return a value.

overloading: Having more than one function with the same name but different
parameters. When you call an overloaded function, C++ knows which
version to use by looking at the arguments you provide.

boolean: A value or variable that can take on one of two states, often called
true and false. In C++, boolean values can be stored in a variable type
called bool.

flag: A variable (usually type bool) that records a condition or status informa-
tion.

comparison operator: An operator that compares two values and produces
a boolean that indicates the relationship between the operands.

logical operator: An operator that combines boolean values in order to test
compound conditions.

Chapter 6

Iteration

6.1 Multiple assignment

I haven’t said much about it, but it is legal in C++ to make more than one
assignment to the same variable. The effect of the second assignment is to
replace the old value of the variable with a new value.

int fred = 5;

cout << fred;

fred = 7;

cout << fred;

The output of this program is 57, because the first time we print fred his value
is 5, and the second time his value is 7.

This kind of multiple assignment is the reason I described variables as
a container for values. When you assign a value to a variable, you change the
contents of the container, as shown in the figure:

fred

5

int fred = 5; fred = 7;

fred

5 7

When there are multiple assignments to a variable, it is especially important
to distinguish between an assignment statement and a statement of equality.
Because C++ uses the = symbol for assignment, it is tempting to interpret a
statement like a = b as a statement of equality. It is not!

First of all, equality is commutative, and assignment is not. For example, in
mathematics if a = 7 then 7 = a. But in C++ the statement a = 7; is legal,
and 7 = a; is not.

53

54 CHAPTER 6. ITERATION

Furthermore, in mathematics, a statement of equality is true for all time. If
a = b now, then a will always equal b. In C++, an assignment statement can
make two variables equal, but they don’t have to stay that way!

int a = 5;

int b = a; // a and b are now equal

a = 3; // a and b are no longer equal

The third line changes the value of a but it does not change the value of b,
and so they are no longer equal. In many programming languages an alternate
symbol is used for assignment, such as <- or :=, in order to avoid confusion.

Although multiple assignment is frequently useful, you should use it with
caution. If the values of variables are changing constantly in different parts of
the program, it can make the code difficult to read and debug.

6.2 Iteration

One of the things computers are often used for is the automation of repetitive
tasks. Repeating identical or similar tasks without making errors is something
that computers do well and people do poorly.

We have seen programs that use recursion to perform repetition, such as
nLines and countdown. This type of repetition is called iteration, and C++
provides several language features that make it easier to write iterative pro-
grams.

The two features we are going to look at are the while statement and the
for statement.

6.3 The while statement

Using a while statement, we can rewrite countdown:

void countdown (int n) {

while (n > 0) {

cout << n << endl;

n = n-1;

}

cout << "Blastoff!" << endl;

}

You can almost read a while statement as if it were English. What this means
is, “While n is greater than zero, continue displaying the value of n and then
reducing the value of n by 1. When you get to zero, output the word ‘Blastoff!”’

More formally, the flow of execution for a while statement is as follows:

1. Evaluate the condition in parentheses, yielding true or false.

6.3. THE WHILE STATEMENT 55

2. If the condition is false, exit the while statement and continue execution
at the next statement.

3. If the condition is true, execute each of the statements between the
squiggly-braces, and then go back to step 1.

This type of flow is called a loop because the third step loops back around
to the top. Notice that if the condition is false the first time through the loop,
the statements inside the loop are never executed. The statements inside the
loop are called the body of the loop.

The body of the loop should change the value of one or more variables so
that, eventually, the condition becomes false and the loop terminates. Otherwise
the loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop will terminate because
we know that the value of n is finite, and we can see that the value of n gets
smaller each time through the loop (each iteration), so eventually we have to
get to zero. In other cases it is not so easy to tell:

void sequence (int n) {

while (n != 1) {

cout << n << endl;

if (n%2 == 0) { // n is even

n = n / 2;

} else { // n is odd

n = n*3 + 1;

}

}

}

The condition for this loop is n != 1, so the loop will continue until n is 1,
which will make the condition false.

At each iteration, the program outputs the value of n and then checks
whether it is even or odd. If it is even, the value of n is divided by two. If
it is odd, the value is replaced by 3n+1. For example, if the starting value (the
argument passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4,
2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious
proof that n will ever reach 1, or that the program will terminate. For some
particular values of n, we can prove termination. For example, if the starting
value is a power of two, then the value of n will be even every time through
the loop, until we get to 1. The previous example ends with such a sequence,
starting with 16.

Particular values aside, the interesting question is whether we can prove that
this program terminates for all values of n. So far, no one has been able to prove
it or disprove it!

56 CHAPTER 6. ITERATION

6.4 Tables

One of the things loops are good for is generating tabular data. For example,
before computers were readily available, people had to calculate logarithms,
sines and cosines, and other common mathematical functions by hand. To
make that easier, there were books containing long tables where you could find
the values of various functions. Creating these tables was slow and boring, and
the result tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was,
“This is great! We can use the computers to generate the tables, so there will
be no errors.” That turned out to be true (mostly), but shortsighted. Soon
thereafter computers and calculators were so pervasive that the tables became
obsolete.

Well, almost. It turns out that for some operations, computers use tables of
values to get an approximate answer, and then perform computations to improve
the approximation. In some cases, there have been errors in the underlying
tables, most famously in the table the original Intel Pentium used to perform
floating-point division.

Although a “log table” is not as useful as it once was, it still makes a good
example of iteration. The following program outputs a sequence of values in the
left column and their logarithms in the right column:

double x = 1.0;

while (x < 10.0) {

cout << x << "\t" << log(x) << "\n";

x = x + 1.0;

}

The sequence \t represents a tab character. The sequence \n represents a new-
line character. These sequences can be included anywhere in a string, although
in these examples the sequence is the whole string.

A tab character causes the cursor to shift to the right until it reaches one of
the tab stops, which are normally every eight characters. As we will see in a
minute, tabs are useful for making columns of text line up.

A newline character has exactly the same effect as endl; it causes the cursor
to move on to the next line. Usually if a newline character appears by itself, I
use endl, but if it appears as part of a string, I use \n.

The output of this program is

1 0

2 0.693147

3 1.09861

4 1.38629

5 1.60944

6 1.79176

7 1.94591

8 2.07944

6.4. TABLES 57

9 2.19722

If these values seem odd, remember that the log function uses base e. Since
powers of two are so important in computer science, we often want to find
logarithms with respect to base 2. To do that, we can use the following formula:

log
2
x =

logex

loge2

Changing the output statement to

cout << x << "\t" << log(x) / log(2.0) << endl;

yields

1 0

2 1

3 1.58496

4 2

5 2.32193

6 2.58496

7 2.80735

8 3

9 3.16993

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base
2 are round numbers. If we wanted to find the logarithms of other powers of
two, we could modify the program like this:

double x = 1.0;

while (x < 100.0) {

cout << x << "\t" << log(x) / log(2.0) << endl;

x = x * 2.0;

}

Now instead of adding something to x each time through the loop, which yields
an arithmetic sequence, we multiply x by something, yielding a geometric
sequence. The result is:

1 0

2 1

4 2

8 3

16 4

32 5

64 6

Because we are using tab characters between the columns, the position of the
second column does not depend on the number of digits in the first column.

Log tables may not be useful any more, but for computer scientists, knowing
the powers of two is! As an exercise, modify this program so that it outputs the
powers of two up to 65536 (that’s 216). Print it out and memorize it.

58 CHAPTER 6. ITERATION

6.5 Two-dimensional tables

A two-dimensional table is a table where you choose a row and a column and
read the value at the intersection. A multiplication table is a good example.
Let’s say you wanted to print a multiplication table for the values from 1 to 6.

A good way to start is to write a simple loop that prints the multiples of 2,
all on one line.

int i = 1;

while (i <= 6) {

cout << 2*i << " ";

i = i + 1;

}

cout << endl;

The first line initializes a variable named i, which is going to act as a counter,
or loop variable. As the loop executes, the value of i increases from 1 to 6,
and then when i is 7, the loop terminates. Each time through the loop, we
print the value 2*i followed by three spaces. By omitting the endl from the
first output statement, we get all the output on a single line.

The output of this program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

6.6 Encapsulation and generalization

Encapsulation usually means taking a piece of code and wrapping it up in a
function, allowing you to take advantage of all the things functions are good
for. We have seen two examples of encapsulation, when we wrote printParity

in Section 4.3 and isSingleDigit in Section 5.8.
Generalization means taking something specific, like printing multiples of 2,

and making it more general, like printing the multiples of any integer.
Here’s a function that encapsulates the loop from the previous section and

generalizes it to print multiples of n.

void printMultiples (int n)

{

int i = 1;

while (i <= 6) {

cout << n*i << " ";

i = i + 1;

}

cout << endl;

}

6.7. FUNCTIONS 59

To encapsulate, all I had to do was add the first line, which declares the name,
parameter, and return type. To generalize, all I had to do was replace the value
2 with the parameter n.

If we call this function with the argument 2, we get the same output as
before. With argument 3, the output is:

3 6 9 12 15 18

and with argument 4, the output is

4 8 12 16 20 24

By now you can probably guess how we are going to print a multiplication table:
we’ll call printMultiples repeatedly with different arguments. In fact, we are
going to use another loop to iterate through the rows.

int i = 1;

while (i <= 6) {

printMultiples (i);

i = i + 1;

}

First of all, notice how similar this loop is to the one inside printMultiples.
All I did was replace the print statement with a function call.

The output of this program is

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

which is a (slightly sloppy) multiplication table. If the sloppiness bothers you,
try replacing the spaces between columns with tab characters and see what you
get.

6.7 Functions

In the last section I mentioned “all the things functions are good for.” About
this time, you might be wondering what exactly those things are. Here are some
of the reasons functions are useful:

• By giving a name to a sequence of statements, you make your program
easier to read and debug.

• Dividing a long program into functions allows you to separate parts of the
program, debug them in isolation, and then compose them into a whole.

60 CHAPTER 6. ITERATION

• Functions facilitate both recursion and iteration.

• Well-designed functions are often useful for many programs. Once you
write and debug one, you can reuse it.

6.8 More encapsulation

To demonstrate encapsulation again, I’ll take the code from the previous section
and wrap it up in a function:

void printMultTable () {

int i = 1;

while (i <= 6) {

printMultiples (i);

i = i + 1;

}

}

The process I am demonstrating is a common development plan. You develop
code gradually by adding lines to main or someplace else, and then when you
get it working, you extract it and wrap it up in a function.

The reason this is useful is that you sometimes don’t know when you start
writing exactly how to divide the program into functions. This approach lets
you design as you go along.

6.9 Local variables

About this time, you might be wondering how we can use the same variable
i in both printMultiples and printMultTable. Didn’t I say that you can
only declare a variable once? And doesn’t it cause problems when one of the
functions changes the value of the variable?

The answer to both questions is “no,” because the i in printMultiples and
the i in printMultTable are not the same variable. They have the same name,
but they do not refer to the same storage location, and changing the value of
one of them has no effect on the other.

Remember that variables that are declared inside a function definition are
local. You cannot access a local variable from outside its “home” function, and
you are free to have multiple variables with the same name, as long as they are
not in the same function.

The stack diagram for this program shows clearly that the two variables
named i are not in the same storage location. They can have different values,
and changing one does not affect the other.

6.10. MORE GENERALIZATION 61

n:

i: 1

i:1 3

main

printMultTable

printMultiples

Notice that the value of the parameter n in printMultiples has to be the
same as the value of i in printMultTable. On the other hand, the value of i in
printMultiple goes from 1 up to n. In the diagram, it happens to be 3. The
next time through the loop it will be 4.

It is often a good idea to use different variable names in different functions,
to avoid confusion, but there are good reasons to reuse names. For example, it is
common to use the names i, j and k as loop variables. If you avoid using them
in one function just because you used them somewhere else, you will probably
make the program harder to read.

6.10 More generalization

As another example of generalization, imagine you wanted a program that would
print a multiplication table of any size, not just the 6x6 table. You could add a
parameter to printMultTable:

void printMultTable (int high) {

int i = 1;

while (i <= high) {

printMultiples (i);

i = i + 1;

}

}

I replaced the value 6 with the parameter high. If I call printMultTable with
the argument 7, I get

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

which is fine, except that I probably want the table to be square (same num-
ber of rows and columns), which means I have to add another parameter to
printMultiples, to specify how many columns the table should have.

62 CHAPTER 6. ITERATION

Just to be annoying, I will also call this parameter high, demonstrating
that different functions can have parameters with the same name (just like local
variables):

void printMultiples (int n, int high) {

int i = 1;

while (i <= high) {

cout << n*i << " ";

i = i + 1;

}

cout << endl;

}

void printMultTable (int high) {

int i = 1;

while (i <= high) {

printMultiples (i, high);

i = i + 1;

}

}

Notice that when I added a new parameter, I had to change the first line of the
function (the interface or prototype), and I also had to change the place where
the function is called in printMultTable. As expected, this program generates
a square 7x7 table:

1 2 3 4 5 6 7

2 4 6 8 10 12 14

3 6 9 12 15 18 21

4 8 12 16 20 24 28

5 10 15 20 25 30 35

6 12 18 24 30 36 42

7 14 21 28 35 42 49

When you generalize a function appropriately, you often find that the resulting
program has capabilities you did not intend. For example, you might notice
that the multiplication table is symmetric, because ab = ba, so all the entries in
the table appear twice. You could save ink by printing only half the table. To
do that, you only have to change one line of printMultTable. Change

printMultiples (i, high);

to

printMultiples (i, i);

and you get

6.11. GLOSSARY 63

1

2 4

3 6 9

4 8 12 16

5 10 15 20 25

6 12 18 24 30 36

7 14 21 28 35 42 49

I’ll leave it up to you to figure out how it works.

6.11 Glossary

loop: A statement that executes repeatedly while a condition is true or until
some condition is satisfied.

infinite loop: A loop whose condition is always true.

body: The statements inside the loop.

iteration: One pass through (execution of) the body of the loop, including the
evaluation of the condition.

tab: A special character, written as \t in C++, that causes the cursor to move
to the next tab stop on the current line.

encapsulate: To divide a large complex program into components (like func-
tions) and isolate the components from each other (for example, by using
local variables).

local variable: A variable that is declared inside a function and that exists
only within that function. Local variables cannot be accessed from outside
their home function, and do not interfere with any other functions.

generalize: To replace something unnecessarily specific (like a constant value)
with something appropriately general (like a variable or parameter). Gen-
eralization makes code more versatile, more likely to be reused, and some-
times even easier to write.

development plan: A process for developing a program. In this chapter, I
demonstrated a style of development based on developing code to do sim-
ple, specific things, and then encapsulating and generalizing.

64 CHAPTER 6. ITERATION

Chapter 7

Strings and things

7.1 Containers for strings

We have seen five types of values—booleans, characters, integers, floating-point
numbers and strings—but only four types of variables—bool, char, int and
double. So far we have no way to store a string in a variable or perform
operations on strings.

In fact, there are several kinds of variables in C++ that can store strings.
One is a basic type that is part of the C++ language, sometimes called “a native
C string.” The syntax for C strings is a bit ugly, and using them requires some
concepts we have not covered yet, so for the most part we are going to avoid
them.

The string type we are going to use is called apstring, which is a type
created specifically for the Computer Science AP Exam.1

Unfortunately, it is not possible to avoid C strings altogether. In a few places
in this chapter I will warn you about some problems you might run into using
apstrings instead of C strings.

1In order for me to talk about AP classes in this book, I have to include the following text:

“Inclusion of the C++ classes defined for use in the Advanced Placement

Computer Science courses does not constitute endorsement of the other material

in this textbook by the College Board, Educational Testing service, or the AP

Computer Science Development Committee. The versions of the C++ classes

defined for use in the AP Computer Science courses included in this textbook

were accurate as of 20 July 1999. Revisions to the classes may have been made

since that time.”

You might be wondering what they mean by class. It will be a few more chapters before I

can give a complete definition, but for now a class is a collection of functions that defines the

operations we can perform on some type. The apstring class contains all the functions that

apply to apstrings.

65

66 CHAPTER 7. STRINGS AND THINGS

7.2 apstring variables

You can create a variable with type apstring in the usual ways:

apstring first;

first = "Hello, ";

apstring second = "world.";

The first line creates an apstring without giving it a value. The second line
assigns it the string value "Hello." The third line is a combined declaration
and assignment, also called an initialization.

Normally when string values like "Hello, " or "world." appear, they are
treated as C strings. In this case, when we assign them to an apstring variable,
they are converted automatically to apstring values.

We can output strings in the usual way:

cout << first << second << endl;

In order to compile this code, you will have to include the header file for
the apstring class, and you will have to add the file apstring.cpp to the list
of files you want to compile. The details of how to do this depend on your
programming environment.

Before proceeding, you should type in the program above and make sure you
can compile and run it.

7.3 Extracting characters from a string

Strings are called “strings” because they are made up of a sequence, or string, of
characters. The first operation we are going to perform on a string is to extract
one of the characters. C++ uses square brackets ([and]) for this operation:

apstring fruit = "banana";

char letter = fruit[1];

cout << letter << endl;

The expression fruit[1] indicates that I want character number 1 from the
string named fruit. The result is stored in a char named letter. When I
output the value of letter, I get a surprise:

a

a is not the first letter of "banana". Unless you are a computer scientist. For
perverse reasons, computer scientists always start counting from zero. The 0th
letter (“zeroeth”) of "banana" is b. The 1th letter (“oneth”) is a and the 2th
(“twoeth”) letter is n.

If you want the the zereoth letter of a string, you have to put zero in the
square brackets:

char letter = fruit[0];

7.4. LENGTH 67

7.4 Length

To find the length of a string (number of characters), we can use the length

function. The syntax for calling this function is a little different from what
we’ve seen before:

int length;

length = fruit.length();

To describe this function call, we would say that we are invoking the length
function on the string named fruit. This vocabulary may seem strange, but
we will see many more examples where we invoke a function on an object. The
syntax for function invocation is called “dot notation,” because the dot (period)
separates the name of the object, fruit, from the name of the function, length.

length takes no arguments, as indicated by the empty parentheses (). The
return value is an integer, in this case 6. Notice that it is legal to have a variable
with the same name as a function.

To find the last letter of a string, you might be tempted to try something
like

int length = fruit.length();

char last = fruit[length]; // WRONG!!

That won’t work. The reason is that there is no 6th letter in "banana". Since
we started counting at 0, the 6 letters are numbered from 0 to 5. To get the
last character, you have to subtract 1 from length.

int length = fruit.length();

char last = fruit[length-1];

7.5 Traversal

A common thing to do with a string is start at the beginning, select each char-
acter in turn, do something to it, and continue until the end. This pattern of
processing is called a traversal. A natural way to encode a traversal is with a
while statement:

int index = 0;

while (index < fruit.length()) {

char letter = fruit[index];

cout << letter << endl;

index = index + 1;

}

This loop traverses the string and outputs each letter on a line by itself. Notice
that the condition is index < fruit.length(), which means that when index

is equal to the length of the string, the condition is false and the body of the

68 CHAPTER 7. STRINGS AND THINGS

loop is not executed. The last character we access is the one with the index
fruit.length()-1.

The name of the loop variable is index. An index is a variable or value
used to specify one member of an ordered set, in this case the set of characters
in the string. The index indicates (hence the name) which one you want. The
set has to be ordered so that each letter has an index and each index refers to
a single character.

As an exercise, write a function that takes an apstring as an argument and
that outputs the letters backwards, all on one line.

7.6 A run-time error

Way back in Section 1.3.2 I talked about run-time errors, which are errors that
don’t appear until a program has started running.

So far, you probably haven’t seen many run-time errors, because we haven’t
been doing many things that can cause one. Well, now we are. If you use the []
operator and you provide an index that is negative or greater than length-1,
you will get a run-time error and a message something like this:

index out of range: 6, string: banana

Try it in your development environment and see how it looks.

7.7 The find function

The apstring class provides several other functions that you can invoke on
strings. The find function is like the opposite the [] operator. Instead of taking
an index and extracting the character at that index, find takes a character and
finds the index where that character appears.

apstring fruit = "banana";

int index = fruit.find(’a’);

This example finds the index of the letter ’a’ in the string. In this case, the
letter appears three times, so it is not obvious what find should do. According
to the documentation, it returns the index of the first appearance, so the result
is 1. If the given letter does not appear in the string, find returns -1.

In addition, there is a version of find that takes another apstring as an
argument and that finds the index where the substring appears in the string.
For example,

apstring fruit = "banana";

int index = fruit.find("nan");

7.8. OUR OWN VERSION OF FIND 69

This example returns the value 2.
You should remember from Section 5.4 that there can be more than one

function with the same name, as long as they take a different number of pa-
rameters or different types. In this case, C++ knows which version of find to
invoke by looking at the type of the argument we provide.

7.8 Our own version of find

If we are looking for a letter in an apstring, we may not want to start at the
beginning of the string. One way to generalize the find function is to write a
version that takes an additional parameter—the index where we should start
looking. Here is an implementation of this function.

int find (apstring s, char c, int i)

{

while (i<s.length()) {

if (s[i] == c) return i;

i = i + 1;

}

return -1;

}

Instead of invoking this function on an apstring, like the first version of find,
we have to pass the apstring as the first argument. The other arguments are
the character we are looking for and the index where we should start.

7.9 Looping and counting

The following program counts the number of times the letter ’a’ appears in a
string:

apstring fruit = "banana";

int length = fruit.length();

int count = 0;

int index = 0;

while (index < length) {

if (fruit[index] == ’a’) {

count = count + 1;

}

index = index + 1;

}

cout << count << endl;

This program demonstrates a common idiom, called a counter. The variable
count is initialized to zero and then incremented each time we find an ’a’. (To

70 CHAPTER 7. STRINGS AND THINGS

increment is to increase by one; it is the opposite of decrement, and unrelated
to excrement, which is a noun.) When we exit the loop, count contains the
result: the total number of a’s.

As an exercise, encapsulate this code in a function named countLetters,
and generalize it so that it accepts the string and the letter as arguments.

As a second exercise, rewrite this function so that instead of traversing the
string, it uses the version of find we wrote in the previous section.

7.10 Increment and decrement operators

Incrementing and decrementing are such common operations that C++ provides
special operators for them. The ++ operator adds one to the current value of
an int, char or double, and -- subtracts one. Neither operator works on
apstrings, and neither should be used on bools.

Technically, it is legal to increment a variable and use it in an expression at
the same time. For example, you might see something like:

cout << i++ << endl;

Looking at this, it is not clear whether the increment will take effect before or
after the value is displayed. Because expressions like this tend to be confusing,
I would discourage you from using them. In fact, to discourage you even more,
I’m not going to tell you what the result is. If you really want to know, you can
try it.

Using the increment operators, we can rewrite the letter-counter:

int index = 0;

while (index < length) {

if (fruit[index] == ’a’) {

count++;

}

index++;

}

It is a common error to write something like

index = index++; // WRONG!!

Unfortunately, this is syntactically legal, so the compiler will not warn you. The
effect of this statement is to leave the value of index unchanged. This is often
a difficult bug to track down.

Remember, you can write index = index +1;, or you can write index++;,
but you shouldn’t mix them.

7.11. STRING CONCATENATION 71

7.11 String concatenation

Interestingly, the + operator can be used on strings; it performs string con-
catenation. To concatenate means to join the two operands end to end. For
example:

apstring fruit = "banana";

apstring bakedGood = " nut bread";

apstring dessert = fruit + bakedGood;

cout << dessert << endl;

The output of this program is banana nut bread.

Unfortunately, the + operator does not work on native C strings, so you
cannot write something like

apstring dessert = "banana" + " nut bread";

because both operands are C strings. As long as one of the operands is an
apstring, though, C++ will automatically convert the other.

It is also possible to concatenate a character onto the beginning or end of an
apstring. In the following example, we will use concatenation and character
arithmetic to output an abecedarian series.

“Abecedarian” refers to a series or list in which the elements appear in
alphabetical order. For example, in Robert McCloskey’s book Make Way for

Ducklings, the names of the ducklings are Jack, Kack, Lack, Mack, Nack, Ouack,
Pack and Quack. Here is a loop that outputs these names in order:

apstring suffix = "ack";

char letter = ’J’;

while (letter <= ’Q’) {

cout << letter + suffix << endl;

letter++;

}

The output of this program is:

Jack

Kack

Lack

Mack

Nack

Oack

Pack

Qack

72 CHAPTER 7. STRINGS AND THINGS

Of course, that’s not quite right because I’ve misspelled “Ouack” and “Quack.”
As an exercise, modify the program to correct this error.

Again, be careful to use string concatenation only with apstrings and not
with native C strings. Unfortunately, an expression like letter + "ack" is
syntactically legal in C++, although it produces a very strange result, at least
in my development environment.

7.12 apstrings are mutable

You can change the letters in an apstring one at a time using the [] operator
on the left side of an assignment. For example,

apstring greeting = "Hello, world!";

greeting[0] = ’J’;

cout << greeting << endl;

produces the output Jello, world!.

7.13 apstrings are comparable

All the comparison operators that work on ints and doubles also work on
apstrings. For example, if you want to know if two strings are equal:

if (word == "banana") {

cout << "Yes, we have no bananas!" << endl;

}

The other comparison operations are useful for putting words in alphabetical
order.

if (word < "banana") {

cout << "Your word, " << word << ", comes before banana." << endl;

} else if (word > "banana") {

cout << "Your word, " << word << ", comes after banana." << endl;

} else {

cout << "Yes, we have no bananas!" << endl;

}

You should be aware, though, that the apstring class does not handle upper
and lower case letters the same way that people do. All the upper case letters
come before all the lower case letters. As a result,

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard
format, like all lower-case, before performing the comparison. The next sections
explains how. I will not address the more difficult problem, which is making the
program realize that zebras are not fruit.

7.14. CHARACTER CLASSIFICATION 73

7.14 Character classification

It is often useful to examine a character and test whether it is upper or lower
case, or whether it is a character or a digit. C++ provides a library of functions
that perform this kind of character classification. In order to use these functions,
you have to include the header file ctype.h.

char letter = ’a’;

if (isalpha(letter)) {

cout << "The character " << letter << " is a letter." << endl;

}

You might expect the return value from isalpha to be a bool, but for reasons I
don’t even want to think about, it is actually an integer that is 0 if the argument
is not a letter, and some non-zero value if it is.

This oddity is not as inconvenient as it seems, because it is legal to use this
kind of integer in a conditional, as shown in the example. The value 0 is treated
as false, and all non-zero values are treated as true.

Technically, this sort of thing should not be allowed—integers are not the
same thing as boolean values. Nevertheless, the C++ habit of converting auto-
matically between types can be useful.

Other character classification functions include isdigit, which identifies
the digits 0 through 9, and isspace, which identifies all kinds of “white” space,
including spaces, tabs, newlines, and a few others. There are also isupper and
islower, which distinguish upper and lower case letters.

Finally, there are two functions that convert letters from one case to the
other, called toupper and tolower. Both take a single character as a parameter
and return a (possibly converted) character.

char letter = ’a’;

letter = toupper (letter);

cout << letter << endl;

The output of this code is A.

As an exercise, use the character classification and conversion library to
write functions named apstringToUpper and apstringToLower that take a
single apstring as a parameter, and that modify the string by converting all
the letters to upper or lower case. The return type should be void.

7.15 Other apstring functions

This chapter does not cover all the apstring functions. Two additional ones,
c str and substr, are covered in Section 15.2 and Section 15.4.

74 CHAPTER 7. STRINGS AND THINGS

7.16 Glossary

object: A collection of related data that comes with a set of functions that
operate on it. The objects we have used so far are the cout object provided
by the system, and apstrings.

index: A variable or value used to select one of the members of an ordered set,
like a character from a string.

traverse: To iterate through all the elements of a set performing a similar
operation on each.

counter: A variable used to count something, usually initialized to zero and
then incremented.

increment: Increase the value of a variable by one. The increment operator in
C++ is ++. In fact, that’s why C++ is called C++, because it is meant
to be one better than C.

decrement: Decrease the value of a variable by one. The decrement operator
in C++ is --.

concatenate: To join two operands end-to-end.

Chapter 8

Structures

8.1 Compound values

Most of the data types we have been working with represent a single value—an
integer, a floating-point number, a boolean value. apstrings are different in the
sense that they are made up of smaller pieces, the characters. Thus, apstrings
are an example of a compound type.

Depending on what we are doing, we may want to treat a compound type
as a single thing (or object), or we may want to access its parts (or instance
variables). This ambiguity is useful.

It is also useful to be able to create your own compound values. C++
provides two mechanisms for doing that: structures and classes. We will
start out with structures and get to classes in Chapter 14 (there is not much
difference between them).

8.2 Point objects

As a simple example of a compound structure, consider the concept of a math-
ematical point. At one level, a point is two numbers (coordinates) that we
treat collectively as a single object. In mathematical notation, points are often
written in parentheses, with a comma separating the coordinates. For example,
(0, 0) indicates the origin, and (x, y) indicates the point x units to the right and
y units up from the origin.

A natural way to represent a point in C++ is with two doubles. The
question, then, is how to group these two values into a compound object, or
structure. The answer is a struct definition:

struct Point {

double x, y;

};

75

76 CHAPTER 8. STRUCTURES

struct definitions appear outside of any function definition, usually at the be-
ginning of the program (after the include statements).

This definition indicates that there are two elements in this structure, named
x and y. These elements are called instance variables, for reasons I will explain
a little later.

It is a common error to leave off the semi-colon at the end of a structure
definition. It might seem odd to put a semi-colon after a squiggly-brace, but
you’ll get used to it.

Once you have defined the new structure, you can create variables with that
type:

Point blank;

blank.x = 3.0;

blank.y = 4.0;

The first line is a conventional variable declaration: blank has type Point.
The next two lines initialize the instance variables of the structure. The “dot
notation” used here is similar to the syntax for invoking a function on an object,
as in fruit.length(). Of course, one difference is that function names are
always followed by an argument list, even if it is empty.

The result of these assignments is shown in the following state diagram:

3x:

y: 4

blank

As usual, the name of the variable blank appears outside the box and its
value appears inside the box. In this case, that value is a compound object with
two named instance variables.

8.3 Accessing instance variables

You can read the values of an instance variable using the same syntax we used
to write them:

int x = blank.x;

The expression blank.x means “go to the object named blank and get the value
of x.” In this case we assign that value to a local variable named x. Notice that
there is no conflict between the local variable named x and the instance variable
named x. The purpose of dot notation is to identify which variable you are
referring to unambiguously.

8.4. OPERATIONS ON STRUCTURES 77

You can use dot notation as part of any C++ expression, so the following
are legal.

cout << blank.x << ", " << blank.y << endl;

double distance = blank.x * blank.x + blank.y * blank.y;

The first line outputs 3, 4; the second line calculates the value 25.

8.4 Operations on structures

Most of the operators we have been using on other types, like mathematical
operators (+, %, etc.) and comparison operators (==, >, etc.), do not work on
structures. Actually, it is possible to define the meaning of these operators for
the new type, but we won’t do that in this book.

On the other hand, the assignment operator does work for structures. It can
be used in two ways: to initialize the instance variables of a structure or to copy
the instance variables from one structure to another. An initialization looks like
this:

Point blank = { 3.0, 4.0 };

The values in squiggly braces get assigned to the instance variables of the struc-
ture one by one, in order. So in this case, x gets the first value and y gets the
second.

Unfortunately, this syntax can be used only in an initialization, not in an
assignment statement. So the following is illegal.

Point blank;

blank = { 3.0, 4.0 }; // WRONG !!

You might wonder why this perfectly reasonable statement should be illegal;
I’m not sure, but I think the problem is that the compiler doesn’t know what
type the right hand side should be. If you add a typecast:

Point blank;

blank = (Point){ 3.0, 4.0 };

That works.
It is legal to assign one structure to another. For example:

Point p1 = { 3.0, 4.0 };

Point p2 = p1;

cout << p2.x << ", " << p2.y << endl;

The output of this program is 3, 4.

78 CHAPTER 8. STRUCTURES

8.5 Structures as parameters

You can pass structures as parameters in the usual way. For example,

void printPoint (Point p) {

cout << "(" << p.x << ", " << p.y << ")" << endl;

}

printPoint takes a point as an argument and outputs it in the standard format.
If you call printPoint (blank), it will output (3, 4).

As a second example, we can rewrite the distance function from Section 5.2
so that it takes two Points as parameters instead of four doubles.

double distance (Point p1, Point p2) {

double dx = p2.x - p1.x;

double dy = p2.y - p1.y;

return sqrt (dx*dx + dy*dy);

}

8.6 Call by value

When you pass a structure as an argument, remember that the argument and
the parameter are not the same variable. Instead, there are two variables (one
in the caller and one in the callee) that have the same value, at least initially.
For example, when we call printPoint, the stack diagram looks like this:

3x:

y: 4

blank

main

p

x:

y:

3

4

printPoint

8.7. CALL BY REFERENCE 79

If printPoint happened to change one of the instance variables of p, it
would have no effect on blank. Of course, there is no reason for printPoint to
modify its parameter, so this isolation between the two functions is appropriate.

This kind of parameter-passing is called “pass by value” because it is the
value of the structure (or other type) that gets passed to the function.

8.7 Call by reference

An alternative parameter-passing mechanism that is available in C++ is called
“pass by reference.” This mechanism makes it possible to pass a structure to a
procedure and modify it.

For example, you can reflect a point around the 45-degree line by swapping
the two coordinates. The most obvious (but incorrect) way to write a reflect

function is something like this:

void reflect (Point p) // WRONG !!

{

double temp = p.x;

p.x = p.y;

p.y = temp;

}

But this won’t work, because the changes we make in reflect will have no
effect on the caller.

Instead, we have to specify that we want to pass the parameter by reference.
We do that by adding an ampersand (&) to the parameter declaration:

void reflect (Point& p)

{

double temp = p.x;

p.x = p.y;

p.y = temp;

}

Now we can call the function in the usual way:

printPoint (blank);

reflect (blank);

printPoint (blank);

The output of this program is as expected:

(3, 4)

(4, 3)

80 CHAPTER 8. STRUCTURES

Here’s how we would draw a stack diagram for this program:

main

p

x:

y:

4

blank

reflect

3

34

The parameter p is a reference to the structure named blank. The usual
representation for a reference is a dot with an arrow that points to whatever
the reference refers to.

The important thing to see in this diagram is that any changes that reflect
makes in p will also affect blank.

Passing structures by reference is more versatile than passing by value, be-
cause the callee can modify the structure. It is also faster, because the system
does not have to copy the whole structure. On the other hand, it is less safe,
since it is harder to keep track of what gets modified where. Nevertheless, in
C++ programs, almost all structures are passed by reference almost all the
time. In this book I will follow that convention.

8.8 Rectangles

Now let’s say that we want to create a structure to represent a rectangle. The
question is, what information do I have to provide in order to specify a rectangle?
To keep things simple let’s assume that the rectangle will be oriented vertically
or horizontally, never at an angle.

There are a few possibilities: I could specify the center of the rectangle (two
coordinates) and its size (width and height), or I could specify one of the corners
and the size, or I could specify two opposing corners.

The most common choice in existing programs is to specify the upper left
corner of the rectangle and the size. To do that in C++, we will define a
structure that contains a Point and two doubles.

struct Rectangle {

Point corner;

double width, height;

};

8.8. RECTANGLES 81

Notice that one structure can contain another. In fact, this sort of thing is quite
common. Of course, this means that in order to create a Rectangle, we have
to create a Point first:

Point corner = { 0.0, 0.0 };

Rectangle box = { corner, 100.0, 200.0 };

This code creates a new Rectangle structure and initializes the instance vari-
ables. The figure shows the effect of this assignment.

x:

y:

0

0

100

200

corner:

box

width:

height:

We can access the width and height in the usual way:

box.width += 50.0;

cout << box.height << endl;

In order to access the instance variables of corner, we can use a temporary
variable:

Point temp = box.corner;

double x = temp.x;

Alternatively, we can compose the two statements:

double x = box.corner.x;

It makes the most sense to read this statement from right to left: “Extract x

from the corner of the box, and assign it to the local variable x.”
While we are on the subject of composition, I should point out that you can,

in fact, create the Point and the Rectangle at the same time:

Rectangle box = { { 0.0, 0.0 }, 100.0, 200.0 };

The innermost squiggly braces are the coordinates of the corner point; together
they make up the first of the three values that go into the new Rectangle. This
statement is an example of nested structure.

82 CHAPTER 8. STRUCTURES

8.9 Structures as return types

You can write functions that return structures. For example, findCenter takes
a Rectangle as an argument and returns a Point that contains the coordinates
of the center of the Rectangle:

Point findCenter (Rectangle& box)

{

double x = box.corner.x + box.width/2;

double y = box.corner.y + box.height/2;

Point result = {x, y};

return result;

}

To call this function, we have to pass a box as an argument (notice that it is
being passed by reference), and assign the return value to a Point variable:

Rectangle box = { {0.0, 0.0}, 100, 200 };

Point center = findCenter (box);

printPoint (center);

The output of this program is (50, 100).

8.10 Passing other types by reference

It’s not just structures that can be passed by reference. All the other types we’ve
seen can, too. For example, to swap two integers, we could write something like:

void swap (int& x, int& y)

{

int temp = x;

x = y;

y = temp;

}

We would call this function in the usual way:

int i = 7;

int j = 9;

swap (i, j);

cout << i << j << endl;

The output of this program is 97. Draw a stack diagram for this program to
convince yourself this is true. If the parameters x and y were declared as regular
parameters (without the &s), swap would not work. It would modify x and y

and have no effect on i and j.
When people start passing things like integers by reference, they often try

to use an expression as a reference argument. For example:

8.11. GETTING USER INPUT 83

int i = 7;

int j = 9;

swap (i, j+1); // WRONG!!

This is not legal because the expression j+1 is not a variable—it does not occupy
a location that the reference can refer to. It is a little tricky to figure out exactly
what kinds of expressions can be passed by reference. For now a good rule of
thumb is that reference arguments have to be variables.

8.11 Getting user input

The programs we have written so far are pretty predictable; they do the same
thing every time they run. Most of the time, though, we want programs that
take input from the user and respond accordingly.

There are many ways to get input, including keyboard input, mouse move-
ments and button clicks, as well as more exotic mechanisms like voice control
and retinal scanning. In this text we will consider only keyboard input.

In the header file iostream.h, C++ defines an object named cin that han-
dles input in much the same way that cout handles output. To get an integer
value from the user:

int x;

cin >> x;

The >> operator causes the program to stop executing and wait for the user to
type something. If the user types a valid integer, the program converts it into
an integer value and stores it in x.

If the user types something other than an integer, C++ doesn’t report an
error, or anything sensible like that. Instead, it puts some meaningless value in
x and continues.

Fortunately, there is a way to check and see if an input statement succeeds.
We can invoke the good function on cin to check what is called the stream
state. good returns a bool: if true, then the last input statement succeeded.
If not, we know that some previous operation failed, and also that the next
operation will fail.

Thus, getting input from the user might look like this:

int main ()

{

int x;

// prompt the user for input

cout << "Enter an integer: ";

// get input

cin >> x;

84 CHAPTER 8. STRUCTURES

// check and see if the input statement succeeded

if (cin.good() == false) {

cout << "That was not an integer." << endl;

return -1;

}

// print the value we got from the user

cout << x << endl;

return 0;

}

cin can also be used to input an apstring:

apstring name;

cout << "What is your name? ";

cin >> name;

cout << name << endl;

Unfortunately, this statement only takes the first word of input, and leaves the
rest for the next input statement. So, if you run this program and type your
full name, it will only output your first name.

Because of these problems (inability to handle errors and funny behavior), I
avoid using the >> operator altogether, unless I am reading data from a source
that is known to be error-free.

Instead, I use a function in the apstring called getline.

apstring name;

cout << "What is your name? ";

getline (cin, name);

cout << name << endl;

The first argument to getline is cin, which is where the input is coming from.
The second argument is the name of the apstring where you want the result
to be stored.

getline reads the entire line until the user hits Return or Enter. This is
useful for inputting strings that contain spaces.

In fact, getline is generally useful for getting input of any kind. For ex-
ample, if you wanted the user to type an integer, you could input a string and
then check to see if it is a valid integer. If so, you can convert it to an integer
value. If not, you can print an error message and ask the user to try again.

To convert a string to an integer you can use the atoi function defined in
the header file stdlib.h. We will get to that in Section 15.4.

8.12. GLOSSARY 85

8.12 Glossary

structure: A collection of data grouped together and treated as a single object.

instance variable: One of the named pieces of data that make up a structure.

reference: A value that indicates or refers to a variable or structure. In a state
diagram, a reference appears as an arrow.

pass by value: A method of parameter-passing in which the value provided as
an argument is copied into the corresponding parameter, but the param-
eter and the argument occupy distinct locations.

pass by reference: A method of parameter-passing in which the parameter is
a reference to the argument variable. Changes to the parameter also affect
the argument variable.

86 CHAPTER 8. STRUCTURES

Chapter 9

More structures

9.1 Time

As a second example of a user-defined structure, we will define a type called
Time, which is used to record the time of day. The various pieces of information
that form a time are the hour, minute and second, so these will be the instance
variables of the structure.

The first step is to decide what type each instance variable should be. It
seems clear that hour and minute should be integers. Just to keep things
interesting, let’s make second a double, so we can record fractions of a second.

Here’s what the structure definition looks like:

struct Time {

int hour, minute;

double second;

};

We can create a Time object in the usual way:

Time time = { 11, 59, 3.14159 };

The state diagram for this object looks like this:

hour:

minute:

second: 3.14159

time

59

11

87

88 CHAPTER 9. MORE STRUCTURES

The word “instance” is sometimes used when we talk about objects, because
every object is an instance (or example) of some type. The reason that instance
variables are so-named is that every instance of a type has a copy of the instance
variables for that type.

9.2 printTime

When we define a new type it is a good idea to write function that displays the
instance variables in a human-readable form. For example:

void printTime (Time& t) {

cout << t.hour << ":" << t.minute << ":" << t.second << endl;

}

The output of this function, if we pass time an argument, is 11:59:3.14159.

9.3 Functions for objects

In the next few sections, I will demonstrate several possible interfaces for func-
tions that operate on objects. For some operations, you will have a choice of
several possible interfaces, so you should consider the pros and cons of each of
these:

pure function: Takes objects and/or basic types as arguments but does not
modify the objects. The return value is either a basic type or a new object
created inside the function.

modifier: Takes objects as parameters and modifies some or all of them. Often
returns void.

fill-in function: One of the parameters is an “empty” object that gets filled
in by the function. Technically, this is a type of modifier.

9.4 Pure functions

A function is considered a pure function if the result depends only on the ar-
guments, and it has no side effects like modifying an argument or outputting
something. The only result of calling a pure function is the return value.

One example is after, which compares two Times and returns a bool that
indicates whether the first operand comes after the second:

bool after (Time& time1, Time& time2) {

if (time1.hour > time2.hour) return true;

if (time1.hour < time2.hour) return false;

9.4. PURE FUNCTIONS 89

if (time1.minute > time2.minute) return true;

if (time1.minute < time2.minute) return false;

if (time1.second > time2.second) return true;

return false;

}

What is the result of this function if the two times are equal? Does that seem like
the appropriate result for this function? If you were writing the documentation
for this function, would you mention that case specifically?

A second example is addTime, which calculates the sum of two times. For
example, if it is 9:14:30, and your breadmaker takes 3 hours and 35 minutes,
you could use addTime to figure out when the bread will be done.

Here is a rough draft of this function that is not quite right:

Time addTime (Time& t1, Time& t2) {

Time sum;

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

return sum;

}

Here is an example of how to use this function. If currentTime contains the
current time and breadTime contains the amount of time it takes for your
breadmaker to make bread, then you could use addTime to figure out when
the bread will be done.

Time currentTime = { 9, 14, 30.0 };

Time breadTime = { 3, 35, 0.0 };

Time doneTime = addTime (currentTime, breadTime);

printTime (doneTime);

The output of this program is 12:49:30, which is correct. On the other hand,
there are cases where the result is not correct. Can you think of one?

The problem is that this function does not deal with cases where the number
of seconds or minutes adds up to more than 60. When that happens we have to
“carry” the extra seconds into the minutes column, or extra minutes into the
hours column.

Here’s a second, corrected version of this function.

Time addTime (Time& t1, Time& t2) {

Time sum;

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

90 CHAPTER 9. MORE STRUCTURES

if (sum.second >= 60.0) {

sum.second -= 60.0;

sum.minute += 1;

}

if (sum.minute >= 60) {

sum.minute -= 60;

sum.hour += 1;

}

return sum;

}

Although it’s correct, it’s starting to get big. Later, I will suggest an alternate
approach to this problem that will be much shorter.

This code demonstrates two operators we have not seen before, += and -=.
These operators provide a concise way to increment and decrement variables.
For example, the statement sum.second -= 60.0; is equivalent to sum.second

= sum.second - 60;

9.5 const parameters

You might have noticed that the parameters for after and addTime are being
passed by reference. Since these are pure functions, they do not modify the
parameters they receive, so I could just as well have passed them by value.

The advantage of passing by value is that the calling function and the callee
are appropriately encapsulated—it is not possible for a change in one to affect
the other, except by affecting the return value.

On the other hand, passing by reference usually is more efficient, because
it avoids copying the argument. Furthermore, there is a nice feature in C++,
called const, that can make reference parameters just as safe as value parame-
ters.

If you are writing a function and you do not intend to modify a parameter,
you can declare that it is a constant reference parameter. The syntax looks
like this:

void printTime (const Time& time) ...

Time addTime (const Time& t1, const Time& t2) ...

I’ve included only the first line of the functions. If you tell the compiler that
you don’t intend to change a parameter, it can help remind you. If you try to
change one, you should get a compiler error, or at least a warning.

9.6 Modifiers

Of course, sometimes you want to modify one of the arguments. Functions that
do are called modifiers.

9.7. FILL-IN FUNCTIONS 91

As an example of a modifier, consider increment, which adds a given number
of seconds to a Time object. Again, a rough draft of this function looks like:

void increment (Time& time, double secs) {

time.second += secs;

if (time.second >= 60.0) {

time.second -= 60.0;

time.minute += 1;

}

if (time.minute >= 60) {

time.minute -= 60;

time.hour += 1;

}

}

The first line performs the basic operation; the remainder deals with the special
cases we saw before.

Is this function correct? What happens if the argument secs is much greater
than 60? In that case, it is not enough to subtract 60 once; we have to keep
doing it until second is below 60. We can do that by replacing the if statements
with while statements:

void increment (Time& time, double secs) {

time.second += secs;

while (time.second >= 60.0) {

time.second -= 60.0;

time.minute += 1;

}

while (time.minute >= 60) {

time.minute -= 60;

time.hour += 1;

}

}

This solution is correct, but not very efficient. Can you think of a solution that
does not require iteration?

9.7 Fill-in functions

Occasionally you will see functions like addTime written with a different interface
(different arguments and return values). Instead of creating a new object every
time addTime is called, we could require the caller to provide an “empty” object
where addTime can store the result. Compare the following with the previous
version:

92 CHAPTER 9. MORE STRUCTURES

void addTimeFill (const Time& t1, const Time& t2, Time& sum) {

sum.hour = t1.hour + t2.hour;

sum.minute = t1.minute + t2.minute;

sum.second = t1.second + t2.second;

if (sum.second >= 60.0) {

sum.second -= 60.0;

sum.minute += 1;

}

if (sum.minute >= 60) {

sum.minute -= 60;

sum.hour += 1;

}

}

One advantage of this approach is that the caller has the option of reusing the
same object repeatedly to perform a series of additions. This can be slightly
more efficient, although it can be confusing enough to cause subtle errors. For
the vast majority of programming, it is worth a spending a little run time to
avoid a lot of debugging time.

Notice that the first two parameters can be declared const, but the third
cannot.

9.8 Which is best?

Anything that can be done with modifiers and fill-in functions can also be done
with pure functions. In fact, there are programming languages, called func-
tional programming languages, that only allow pure functions. Some program-
mers believe that programs that use pure functions are faster to develop and
less error-prone than programs that use modifiers. Nevertheless, there are times
when modifiers are convenient, and cases where functional programs are less ef-
ficient.

In general, I recommend that you write pure functions whenever it is rea-
sonable to do so, and resort to modifiers only if there is a compelling advantage.
This approach might be called a functional programming style.

9.9 Incremental development versus planning

In this chapter I have demonstrated an approach to program development I
refer to as rapid prototyping with iterative improvement. In each case,
I wrote a rough draft (or prototype) that performed the basic calculation, and
then tested it on a few cases, correcting flaws as I found them.

Although this approach can be effective, it can lead to code that is unnec-
essarily complicated—since it deals with many special cases—and unreliable—
since it is hard to know if you have found all the errors.

9.10. GENERALIZATION 93

An alternative is high-level planning, in which a little insight into the prob-
lem can make the programming much easier. In this case the insight is that a
Time is really a three-digit number in base 60! The second is the “ones column,”
the minute is the “60’s column”, and the hour is the “3600’s column.”

When we wrote addTime and increment, we were effectively doing addition
in base 60, which is why we had to “carry” from one column to the next.

Thus an alternate approach to the whole problem is to convert Times into
doubles and take advantage of the fact that the computer already knows how
to do arithmetic with doubles. Here is a function that converts a Time into a
double:

double convertToSeconds (const Time& t) {

int minutes = t.hour * 60 + t.minute;

double seconds = minutes * 60 + t.second;

return seconds;

}

Now all we need is a way to convert from a double to a Time object:

Time makeTime (double secs) {

Time time;

time.hour = int (secs / 3600.0);

secs -= time.hour * 3600.0;

time.minute = int (secs / 60.0);

secs -= time.minute * 60;

time.second = secs;

return time;

}

You might have to think a bit to convince yourself that the technique I am using
to convert from one base to another is correct. Assuming you are convinced, we
can use these functions to rewrite addTime:

Time addTime (const Time& t1, const Time& t2) {

double seconds = convertToSeconds (t1) + convertToSeconds (t2);

return makeTime (seconds);

}

This is much shorter than the original version, and it is much easier to demon-
strate that it is correct (assuming, as usual, that the functions it calls are
correct). As an exercise, rewrite increment the same way.

9.10 Generalization

In some ways converting from base 60 to base 10 and back is harder than just
dealing with times. Base conversion is more abstract; our intuition for dealing
with times is better.

94 CHAPTER 9. MORE STRUCTURES

But if we have the insight to treat times as base 60 numbers, and make
the investment of writing the conversion functions (convertToSeconds and
makeTime), we get a program that is shorter, easier to read and debug, and
more reliable.

It is also easier to add more features later. For example, imagine subtracting
two Times to find the duration between them. The naive approach would be to
implement subtraction with borrowing. Using the conversion functions would
be easier and more likely to be correct.

Ironically, sometimes making a problem harder (more general) makes is eas-
ier (fewer special cases, fewer opportunities for error).

9.11 Algorithms

When you write a general solution for a class of problems, as opposed to a specific
solution to a single problem, you have written an algorithm. I mentioned this
word in Chapter 1, but did not define it carefully. It is not easy to define, so I
will try a couple of approaches.

First, consider something that is not an algorithm. When you learned to
multiply single-digit numbers, you probably memorized the multiplication table.
In effect, you memorized 100 specific solutions. That kind of knowledge is not
really algorithmic.

But if you were “lazy,” you probably cheated by learning a few tricks. For
example, to find the product of n and 9, you can write n − 1 as the first digit
and 10 − n as the second digit. This trick is a general solution for multiplying
any single-digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction
with borrowing, and long division are all algorithms. One of the characteristics
of algorithms is that they do not require any intelligence to carry out. They
are mechanical processes in which each step follows from the last according to
a simple set of rules.

In my opinion, it is embarrassing that humans spend so much time in school
learning to execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intel-
lectually challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious
thought, are the most difficult to express algorithmically. Understanding natural
language is a good example. We all do it, but so far no one has been able to
explain how we do it, at least not in the form of an algorithm.

Later in this book, you will have the opportunity to design simple algorithms
for a variety of problems. If you take the next class in the Computer Science
sequence, Data Structures, you will see some of the most interesting, clever, and
useful algorithms computer science has produced.

9.12. GLOSSARY 95

9.12 Glossary

instance: An example from a category. My cat is an instance of the category
“feline things.” Every object is an instance of some type.

instance variable: One of the named data items that make up an structure.
Each structure has its own copy of the instance variables for its type.

constant reference parameter: A parameter that is passed by reference but
that cannot be modified.

pure function: A function whose result depends only on its parameters, and
that has so effects other than returning a value.

functional programming style: A style of program design in which the ma-
jority of functions are pure.

modifier: A function that changes one or more of the objects it receives as
parameters, and usually returns void.

fill-in function: A function that takes an “empty” object as a parameter and
fills it its instance variables instead of generating a return value.

algorithm: A set of instructions for solving a class of problems by a mechanical,
unintelligent process.

96 CHAPTER 9. MORE STRUCTURES

Chapter 10

Vectors

A vector is a set of values where each value is identified by a number (called an
index). An apstring is similar to a vector, since it is made up of an indexed set
of characters. The nice thing about vectors is that they can be made up of any
type of element, including basic types like ints and doubles, and user-defined
types like Point and Time.

The vector type that appears on the AP exam is called apvector. In order
to use it, you have to include the header file apvector.h; again, the details of
how to do that depend on your programming environment.

You can create a vector the same way you create other variable types:

apvector<int> count;

apvector<double> doubleVector;

The type that makes up the vector appears in angle brackets (< and >). The
first line creates a vector of integers named count; the second creates a vector of
doubles. Although these statements are legal, they are not very useful because
they create vectors that have no elements (their length is zero). It is more
common to specify the length of the vector in parentheses:

apvector<int> count (4);

The syntax here is a little odd; it looks like a combination of a variable decla-
rations and a function call. In fact, that’s exactly what it is. The function we
are invoking is an apvector constructor. A constructor is a special function
that creates new objects and initializes their instance variables. In this case,
the constructor takes a single argument, which is the size of the new vector.

The following figure shows how vectors are represented in state diagrams:

97

98 CHAPTER 10. VECTORS

0 0 0 0

0 1 2 3

count

The large numbers inside the boxes are the elements of the vector. The
small numbers outside the boxes are the indices used to identify each box. When
you allocate a new vector, the elements are not initialized. They could contain
any values.

There is another constructor for apvectors that takes two parameters; the
second is a “fill value,” the value that will be assigned to each of the elements.

apvector<int> count (4, 0);

This statement creates a vector of four elements and initializes all of them to
zero.

10.1 Accessing elements

The [] operator reads and writes the elements of a vector in much the same
way it accesses the characters in an apstring. As with apstrings, the indices
start at zero, so count[0] refers to the “zeroeth” element of the vector, and
count[1] refers to the “oneth” element. You can use the [] operator anywhere
in an expression:

count[0] = 7;

count[1] = count[0] * 2;

count[2]++;

count[3] -= 60;

All of these are legal assignment statements. Here is the effect of this code
fragment:

0 1 2 3

7 1 -6014

count

10.2. COPYING VECTORS 99

Since elements of this vector are numbered from 0 to 3, there is no element
with the index 4. It is a common error to go beyond the bounds of a vector,
which causes a run-time error. The program outputs an error message like
“Illegal vector index”, and then quits.

You can use any expression as an index, as long as it has type int. One of
the most common ways to index a vector is with a loop variable. For example:

int i = 0;

while (i < 4) {

cout << count[i] << endl;

i++;

}

This while loop counts from 0 to 4; when the loop variable i is 4, the condition
fails and the loop terminates. Thus, the body of the loop is only executed when
i is 0, 1, 2 and 3.

Each time through the loop we use i as an index into the vector, outputting
the ith element. This type of vector traversal is very common. Vectors and
loops go together like fava beans and a nice Chianti.

10.2 Copying vectors

There is one more constructor for apvectors, which is called a copy constructor
because it takes one apvector as an argument and creates a new vector that is
the same size, with the same elements.

apvector<int> copy (count);

Although this syntax is legal, it is almost never used for apvectors because
there is a better alternative:

apvector<int> copy = count;

The = operator works on apvectors in pretty much the way you would expect.

10.3 for loops

The loops we have written so far have a number of elements in common. All of
them start by initializing a variable; they have a test, or condition, that depends
on that variable; and inside the loop they do something to that variable, like
increment it.

This type of loop is so common that there is an alternate loop statement,
called for, that expresses it more concisely. The general syntax looks like this:

for (INITIALIZER; CONDITION; INCREMENTOR) {

BODY

}

100 CHAPTER 10. VECTORS

This statement is exactly equivalent to

INITIALIZER;

while (CONDITION) {

BODY

INCREMENTOR

}

except that it is more concise and, since it puts all the loop-related statements
in one place, it is easier to read. For example:

for (int i = 0; i < 4; i++) {

cout << count[i] << endl;

}

is equivalent to

int i = 0;

while (i < 4) {

cout << count[i] << endl;

i++;

}

10.4 Vector length

There are only a couple of functions you can invoke on an apvector. One of
them is very useful, though: length. Not surprisingly, it returns the length of
the vector (the number of elements).

It is a good idea to use this value as the upper bound of a loop, rather than
a constant. That way, if the size of the vector changes, you won’t have to go
through the program changing all the loops; they will work correctly for any
size vector.

for (int i = 0; i < count.length(); i++) {

cout << count[i] << endl;

}

The last time the body of the loop gets executed, the value of i is
count.length() - 1, which is the index of the last element. When i is equal
to count.length(), the condition fails and the body is not executed, which is
a good thing, since it would cause a run-time error.

10.5 Random numbers

Most computer programs do the same thing every time they are executed, so
they are said to be deterministic. Usually, determinism is a good thing, since

10.5. RANDOM NUMBERS 101

we expect the same calculation to yield the same result. For some applications,
though, we would like the computer to be unpredictable. Games are an obvious
example.

Making a program truly nondeterministic turns out to be not so easy, but
there are ways to make it at least seem nondeterministic. One of them is to
generate pseudorandom numbers and use them to determine the outcome of the
program. Pseudorandom numbers are not truly random in the mathematical
sense, but for our purposes, they will do.

C++ provides a function called random that generates pseudorandom num-
bers. It is declared in the header file stdlib.h, which contains a variety of
“standard library” functions, hence the name.

The return value from random is an integer between 0 and RAND MAX, where
RAND MAX is a large number (about 2 billion on my computer) also defined in the
header file. Each time you call random you get a different randomly-generated
number. To see a sample, run this loop:

for (int i = 0; i < 4; i++) {

int x = random ();

cout << x << endl;

}

On my machine I got the following output:

1804289383

846930886

1681692777

1714636915

You will probably get something similar, but different, on yours.
Of course, we don’t always want to work with gigantic integers. More often

we want to generate integers between 0 and some upper bound. A simple way
to do that is with the modulus operator. For example:

int x = random ();

int y = x % upperBound;

Since y is the remainder when x is divided by upperBound, the only possible
values for y are between 0 and upperBound - 1, including both end points.
Keep in mind, though, that y will never be equal to upperBound.

It is also frequently useful to generate random floating-point values. A com-
mon way to do that is by dividing by RAND MAX. For example:

int x = random ();

double y = double(x) / RAND_MAX;

This code sets y to a random value between 0.0 and 1.0, including both end
points. As an exercise, you might want to think about how to generate a
random floating-point value in a given range; for example, between 100.0 and
200.0.

102 CHAPTER 10. VECTORS

10.6 Statistics

The numbers generated by random are supposed to be distributed uniformly.
That means that each value in the range should be equally likely. If we count
the number of times each value appears, it should be roughly the same for all
values, provided that we generate a large number of values.

In the next few sections, we will write programs that generate a sequence of
random numbers and check whether this property holds true.

10.7 Vector of random numbers

The first step is to generate a large number of random values and store them in
a vector. By “large number,” of course, I mean 20. It’s always a good idea to
start with a manageable number, to help with debugging, and then increase it
later.

The following function takes a single argument, the size of the vector. It
allocates a new vector of ints, and fills it with random values between 0 and
upperBound-1.

apvector<int> randomVector (int n, int upperBound) {

apvector<int> vec (n);

for (int i = 0; i<vec.length(); i++) {

vec[i] = random () % upperBound;

}

return vec;

}

The return type is apvector<int>, which means that this function returns a
vector of integers. To test this function, it is convenient to have a function that
outputs the contents of a vector.

void printVector (const apvector<int>& vec) {

for (int i = 0; i<vec.length(); i++) {

cout << vec[i] << " ";

}

}

Notice that it is legal to pass apvectors by reference. In fact it is quite common,
since it makes it unnecessary to copy the vector. Since printVector does not
modify the vector, we declare the parameter const.

The following code generates a vector and outputs it:

int numValues = 20;

int upperBound = 10;

apvector<int> vector = randomVector (numValues, upperBound);

printVector (vector);

10.8. COUNTING 103

On my machine the output is

3 6 7 5 3 5 6 2 9 1 2 7 0 9 3 6 0 6 2 6

which is pretty random-looking. Your results may differ.
If these numbers are really random, we expect each digit to appear the same

number of times—twice each. In fact, the number 6 appears five times, and the
numbers 4 and 8 never appear at all.

Do these results mean the values are not really uniform? It’s hard to tell.
With so few values, the chances are slim that we would get exactly what we
expect. But as the number of values increases, the outcome should be more
predictable.

To test this theory, we’ll write some programs that count the number of times
each value appears, and then see what happens when we increase numValues.

10.8 Counting

A good approach to problems like this is to think of simple functions that are
easy to write, and that might turn out to be useful. Then you can combine
them into a solution. This approach is sometimes called bottom-up design.
Of course, it is not easy to know ahead of time which functions are likely to be
useful, but as you gain experience you will have a better idea.

Also, it is not always obvious what sort of things are easy to write, but a
good approach is to look for subproblems that fit a pattern you have seen before.

Back in Section 7.9 we looked at a loop that traversed a string and counted
the number of times a given letter appeared. You can think of this program
as an example of a pattern called “traverse and count.” The elements of this
pattern are:

• A set or container that can be traversed, like a string or a vector.

• A test that you can apply to each element in the container.

• A counter that keeps track of how many elements pass the test.

In this case, I have a function in mind called howMany that counts the number
of elements in a vector that equal a given value. The parameters are the vector
and the integer value we are looking for. The return value is the number of
times the value appears.

int howMany (const apvector<int>& vec, int value) {

int count = 0;

for (int i=0; i< vec.length(); i++) {

if (vec[i] == value) count++;

}

return count;

}

104 CHAPTER 10. VECTORS

10.9 Checking the other values

howMany only counts the occurrences of a particular value, and we are interested
in seeing how many times each value appears. We can solve that problem with
a loop:

int numValues = 20;

int upperBound = 10;

apvector<int> vector = randomVector (numValues, upperBound);

cout << "value\thowMany";

for (int i = 0; i<upperBound; i++) {

cout << i << ’\t’ << howMany (vector, i) << endl;

}

Notice that it is legal to declare a variable inside a for statement. This syntax
is sometimes convenient, but you should be aware that a variable declared inside
a loop only exists inside the loop. If you try to refer to i later, you will get a
compiler error.

This code uses the loop variable as an argument to howMany, in order to
check each value between 0 and 9, in order. The result is:

value howMany

0 2

1 1

2 3

3 3

4 0

5 2

6 5

7 2

8 0

9 2

Again, it is hard to tell if the digits are really appearing equally often. If we
increase numValues to 100,000 we get the following:

value howMany

0 10130

1 10072

2 9990

3 9842

4 10174

5 9930

6 10059

7 9954

10.10. A HISTOGRAM 105

8 9891

9 9958

In each case, the number of appearances is within about 1% of the expected
value (10,000), so we conclude that the random numbers are probably uniform.

10.10 A histogram

It is often useful to take the data from the previous tables and store them for
later access, rather than just print them. What we need is a way to store 10
integers. We could create 10 integer variables with names like howManyOnes,
howManyTwos, etc. But that would require a lot of typing, and it would be a
real pain later if we decided to change the range of values.

A better solution is to use a vector with length 10. That way we can create
all ten storage locations at once and we can access them using indices, rather
than ten different names. Here’s how:

int numValues = 100000;

int upperBound = 10;

apvector<int> vector = randomVector (numValues, upperBound);

apvector<int> histogram (upperBound);

for (int i = 0; i<upperBound; i++) {

int count = howMany (vector, i);

histogram[i] = count;

}

I called the vector histogram because that’s a statistical term for a vector of
numbers that counts the number of appearances of a range of values.

The tricky thing here is that I am using the loop variable in two different
ways. First, it is an argument to howMany, specifying which value I am interested
in. Second, it is an index into the histogram, specifying which location I should
store the result in.

10.11 A single-pass solution

Although this code works, it is not as efficient as it could be. Every time it calls
howMany, it traverses the entire vector. In this example we have to traverse the
vector ten times!

It would be better to make a single pass through the vector. For each value in
the vector we could find the corresponding counter and increment it. In other
words, we can use the value from the vector as an index into the histogram.
Here’s what that looks like:

apvector<int> histogram (upperBound, 0);

106 CHAPTER 10. VECTORS

for (int i = 0; i<numValues; i++) {

int index = vector[i];

histogram[index]++;

}

The first line initializes the elements of the histogram to zeroes. That way, when
we use the increment operator (++) inside the loop, we know we are starting
from zero. Forgetting to initialize counters is a common error.

As an exercise, encapsulate this code in a function called histogram that
takes a vector and the range of values in the vector (in this case 0 through 10),
and that returns a histogram of the values in the vector.

10.12 Random seeds

If you have run the code in this chapter a few times, you might have noticed
that you are getting the same “random” values every time. That’s not very
random!

One of the properties of pseudorandom number generators is that if they
start from the same place they will generate the same sequence of values. The
starting place is called a seed; by default, C++ uses the same seed every time
you run the program.

While you are debugging, it is often helpful to see the same sequence over
and over. That way, when you make a change to the program you can compare
the output before and after the change.

If you want to choose a different seed for the random number generator,
you can use the srand function. It takes a single argument, which is an integer
between 0 and RAND MAX.

For many applications, like games, you want to see a different random se-
quence every time the program runs. A common way to do that is to use a
library function like gettimeofday to generate something reasonably unpre-
dictable and unrepeatable, like the number of milliseconds since the last second
tick, and use that number as a seed. The details of how to do that depend on
your development environment.

10.13 Glossary

vector: A named collection of values, where all the values have the same type,
and each value is identified by an index.

element: One of the values in a vector. The [] operator selects elements of a
vector.

index: An integer variable or value used to indicate an element of a vector.

10.13. GLOSSARY 107

constructor: A special function that creates a new object and initializes its
instance variables.

deterministic: A program that does the same thing every time it is run.

pseudorandom: A sequence of numbers that appear to be random, but which
are actually the product of a deterministic computation.

seed: A value used to initialize a random number sequence. Using the same
seed should yield the same sequence of values.

bottom-up design: A method of program development that starts by writing
small, useful functions and then assembling them into larger solutions.

histogram: A vector of integers where each integer counts the number of values
that fall into a certain range.

108 CHAPTER 10. VECTORS

Chapter 11

Member functions

11.1 Objects and functions

C++ is generally considered an object-oriented programming language, which
means that it provides features that support object-oriented programming.

It’s not easy to define object-oriented programming, but we have already
seen some features of it:

1. Programs are made up of a collection of structure definitions and func-
tion definitions, where most of the functions operate on specific kinds of
structures (or objecs).

2. Each structure definition corresponds to some object or concept in the
real world, and the functions that operate on that structure correspond
to the ways real-world objects interact.

For example, the Time structure we defined in Chapter 9 obviously corre-
sponds to the way people record the time of day, and the operations we defined
correspond to the sorts of things people do with recorded times. Similarly, the
Point and Rectangle structures correspond to the mathematical concept of a
point and a rectangle.

So far, though, we have not taken advantage of the features C++ provides
to support object-oriented programming. Strictly speaking, these features are
not necessary. For the most part they provide an alternate syntax for doing
things we have already done, but in many cases the alternate syntax is more
concise and more accurately conveys the structure of the program.

For example, in the Time program, there is no obvious connection between
the structure definition and the function definitions that follow. With some
examination, it is apparent that every function takes at least one Time structure
as a parameter.

This observation is the motivation for member functions. Member func-
tion differ from the other functions we have written in two ways:

109

110 CHAPTER 11. MEMBER FUNCTIONS

1. When we call the function, we invoke it on an object, rather than just call
it. People sometimes describe this process as “performing an operation
on an object,” or “sending a message to an object.”

2. The function is declared inside the struct definition, in order to make the
relationship between the structure and the function explicit.

In the next few sections, we will take the functions from Chapter 9 and
transform them into member functions. One thing you should realize is that
this transformation is purely mechanical; in other words, you can do it just by
following a sequence of steps.

As I said, anything that can be done with a member function can also be done
with a nonmember function (sometimes called a free-standing function). But
sometimes there is an advantage to one over the other. If you are comfortable
converting from one form to another, you will be able to choose the best form
for whatever you are doing.

11.2 print

In Chapter 9 we defined a structure named Time and wrote a function named
printTime

struct Time {

int hour, minute;

double second;

};

void printTime (const Time& time) {

cout << time.hour << ":" << time.minute << ":" << time.second << endl;

}

To call this function, we had to pass a Time object as a parameter.

Time currentTime = { 9, 14, 30.0 };

printTime (currentTime);

To make printTime into a member function, the first step is to change the name
of the function from printTime to Time::print. The :: operator separates
the name of the structure from the name of the function; together they indicate
that this is a function named print that can be invoked on a Time structure.

The next step is to eliminate the parameter. Instead of passing an object as
an argument, we are going to invoke the function on an object.

As a result, inside the function, we no longer have a parameter named time.
Instead, we have a current object, which is the object the function is invoked
on. We can refer to the current object using the C++ keyword this.

One thing that makes life a little difficult is that this is actually a pointer
to a structure, rather than a structure itself. A pointer is similar to a reference,

11.3. IMPLICIT VARIABLE ACCESS 111

but I don’t want to go into the details of using pointers yet. The only pointer
operation we need for now is the * operator, which converts a structure pointer
into a structure. In the following function, we use it to assign the value of this
to a local variable named time:

void Time::print () {

Time time = *this;

cout << time.hour << ":" << time.minute << ":" << time.second << endl;

}

The first two lines of this function changed quite a bit as we transformed it into
a member function, but notice that the output statement itself did not change
at all.

In order to invoke the new version of print, we have to invoke it on a Time

object:

Time currentTime = { 9, 14, 30.0 };

currentTime.print ();

The last step of the transformation process is that we have to declare the new
function inside the structure definition:

struct Time {

int hour, minute;

double second;

void Time::print ();

};

A function declaration looks just like the first line of the function definition,
except that it has a semi-colon at the end. The declaration describes the inter-
face of the function; that is, the number and types of the arguments, and the
type of the return value.

When you declare a function, you are making a promise to the compiler
that you will, at some point later on in the program, provide a definition for
the function. This definition is sometimes called the implementation of the
function, since it contains the details of how the function works. If you omit
the definition, or provide a definition that has an interface different from what
you promised, the compiler will complain.

11.3 Implicit variable access

Actually, the new version of Time::print is more complicated than it needs
to be. We don’t really need to create a local variable in order to refer to the
instance variables of the current object.

If the function refers to hour, minute, or second, all by themselves with no
dot notation, C++ knows that it must be referring to the current object. So
we could have written:

112 CHAPTER 11. MEMBER FUNCTIONS

void Time::print ()

{

cout << hour << ":" << minute << ":" << second << endl;

}

This kind of variable access is called “implicit” because the name of the object
does not appear explicitly. Features like this are one reason member functions
are often more concise than nonmember functions.

11.4 Another example

Let’s convert increment to a member function. Again, we are going to transform
one of the parameters into the implicit parameter called this. Then we can go
through the function and make all the variable accesses implicit.

void Time::increment (double secs) {

second += secs;

while (second >= 60.0) {

second -= 60.0;

minute += 1;

}

while (minute >= 60) {

minute -= 60.0;

hour += 1;

}

}

By the way, remember that this is not the most efficient implementation of this
function. If you didn’t do it back in Chapter 9, you should write a more efficient
version now.

To declare the function, we can just copy the first line into the structure
definition:

struct Time {

int hour, minute;

double second;

void Time::print ();

void Time::increment (double secs);

};

And again, to call it, we have to invoke it on a Time object:

Time currentTime = { 9, 14, 30.0 };

currentTime.increment (500.0);

currentTime.print ();

The output of this program is 9:22:50.

11.5. YET ANOTHER EXAMPLE 113

11.5 Yet another example

The original version of convertToSeconds looked like this:

double convertToSeconds (const Time& time) {

int minutes = time.hour * 60 + time.minute;

double seconds = minutes * 60 + time.second;

return seconds;

}

It is straightforward to convert this to a member function:

double Time::convertToSeconds () const {

int minutes = hour * 60 + minute;

double seconds = minutes * 60 + second;

return seconds;

}

The interesting thing here is that the implicit parameter should be declared
const, since we don’t modify it in this function. But it is not obvious where we
should put information about a parameter that doesn’t exist. The answer, as
you can see in the example, is after the parameter list (which is empty in this
case).

The print function in the previous section should also declare that the
implicit parameter is const.

11.6 A more complicated example

Although the process of transforming functions into member functions is me-
chanical, there are some oddities. For example, after operates on two Time

structures, not just one, and we can’t make both of them implicit. Instead, we
have to invoke the function on one of them and pass the other as an argument.

Inside the function, we can refer to one of the them implicitly, but to access
the instance variables of the other we continue to use dot notation.

bool Time::after (const Time& time2) const {

if (hour > time2.hour) return true;

if (hour < time2.hour) return false;

if (minute > time2.minute) return true;

if (minute < time2.minute) return false;

if (second > time2.second) return true;

return false;

}

To invoke this function:

114 CHAPTER 11. MEMBER FUNCTIONS

if (doneTime.after (currentTime)) {

cout << "The bread will be done after it starts." << endl;

}

You can almost read the invocation like English: “If the done-time is after the
current-time, then...”

11.7 Constructors

Another function we wrote in Chapter 9 was makeTime:

Time makeTime (double secs) {

Time time;

time.hour = int (secs / 3600.0);

secs -= time.hour * 3600.0;

time.minute = int (secs / 60.0);

secs -= time.minute * 60.0;

time.second = secs;

return time;

}

Of course, for every new type, we need to be able to create new objects. In fact,
functions like makeTime are so common that there is a special function syntax
for them. These functions are called constructors and the syntax looks like
this:

Time::Time (double secs) {

hour = int (secs / 3600.0);

secs -= hour * 3600.0;

minute = int (secs / 60.0);

secs -= minute * 60.0;

second = secs;

}

First, notice that the constructor has the same name as the class, and no return
type. The arguments haven’t changed, though.

Second, notice that we don’t have to create a new time object, and we don’t
have to return anything. Both of these steps are handled automatically. We can
refer to the new object—the one we are constructing—using the keyword this,
or implicitly as shown here. When we write values to hour, minute and second,
the compiler knows we are referring to the instance variables of the new object.

To invoke the constructor, you use syntax that is a cross between a variable
declaration and a function call:

Time time (seconds);

11.8. INITIALIZE OR CONSTRUCT? 115

This statement declares that the variable time has type Time, and it invokes
the constructor we just wrote, passing the value of seconds as an argument.
The system allocates space for the new object and the constructor initializes its
instance variables. The result is assigned to the variable time.

11.8 Initialize or construct?

Earlier we declared and initialized some Time structures using squiggly-braces:

Time currentTime = { 9, 14, 30.0 };

Time breadTime = { 3, 35, 0.0 };

Now, using constructors, we have a different way to declare and initialize:

Time time (seconds);

These two functions represent different programming styles, and different points
in the history of C++. Maybe for that reason, the C++ compiler requires that
you use one or the other, and not both in the same program.

If you define a constructor for a structure, then you have to use the con-
structor to initialize all new structures of that type. The alternate syntax using
squiggly-braces is no longer allowed.

Fortunately, it is legal to overload constructors in the same way we over-
loaded functions. In other words, there can be more than one constructor with
the same “name,” as long as they take different parameters. Then, when we
initialize a new object the compiler will try to find a constructor that takes the
appropriate parameters.

For example, it is common to have a constructor that takes one parameter
for each instance variable, and that assigns the values of the parameters to the
instance variables:

Time::Time (int h, int m, double s)

{

hour = h; minute = m; second = s;

}

To invoke this constructor, we use the same funny syntax as before, except that
the arguments have to be two integers and a double:

Time currentTime (9, 14, 30.0);

11.9 One last example

The final example we’ll look at is addTime:

116 CHAPTER 11. MEMBER FUNCTIONS

Time addTime2 (const Time& t1, const Time& t2) {

double seconds = convertToSeconds (t1) + convertToSeconds (t2);

return makeTime (seconds);

}

We have to make several changes to this function, including:

1. Change the name from addTime to Time::add.

2. Replace the first parameter with an implicit parameter, which should be
declared const.

3. Replace the use of makeTime with a constructor invocation.

Here’s the result:

Time Time::add (const Time& t2) const {

double seconds = convertToSeconds () + t2.convertToSeconds ();

Time time (seconds);

return time;

}

The first time we invoke convertToSeconds, there is no apparent object! Inside
a member function, the compiler assumes that we want to invoke the function
on the current object. Thus, the first invocation acts on this; the second
invocation acts on t2.

The next line of the function invokes the constructor that takes a single
double as a parameter; the last line returns the resulting object.

11.10 Header files

It might seem like a nuisance to declare functions inside the structure definition
and then define the functions later. Any time you change the interface to a
function, you have to change it in two places, even if it is a small change like
declaring one of the parameters const.

There is a reason for the hassle, though, which is that it is now possible to
separate the structure definition and the functions into two files: the header
file, which contains the structure definition, and the implementation file, which
contains the functions.

Header files usually have the same name as the implementation file, but
with the suffix .h instead of .cpp. For the example we have been looking at,
the header file is called Time.h, and it contains the following:

struct Time {

// instance variables

int hour, minute;

double second;

11.10. HEADER FILES 117

// constructors

Time (int hour, int min, double secs);

Time (double secs);

// modifiers

void increment (double secs);

// functions

void print () const;

bool after (const Time& time2) const;

Time add (const Time& t2) const;

double convertToSeconds () const;

};

Notice that in the structure definition I don’t really have to include the prefix
Time:: at the beginning of every function name. The compiler knows that we
are declaring functions that are members of the Time structure.

Time.cpp contains the definitions of the member functions (I have elided the
function bodies to save space):

#include <iostream.h>

#include "Time.h"

Time::Time (int h, int m, double s) ...

Time::Time (double secs) ...

void Time::increment (double secs) ...

void Time::print () const ...

bool Time::after (const Time& time2) const ...

Time Time::add (const Time& t2) const ...

double Time::convertToSeconds () const ...

In this case the definitions in Time.cpp appear in the same order as the decla-
rations in Time.h, although it is not necessary.

On the other hand, it is necessary to include the header file using an include

statement. That way, while the compiler is reading the function definitions, it
knows enough about the structure to check the code and catch errors.

Finally, main.cpp contains the function main along with any functions we
want that are not members of the Time structure (in this case there are none):

#include <iostream.h>

118 CHAPTER 11. MEMBER FUNCTIONS

#include "Time.h"

void main ()

{

Time currentTime (9, 14, 30.0);

currentTime.increment (500.0);

currentTime.print ();

Time breadTime (3, 35, 0.0);

Time doneTime = currentTime.add (breadTime);

doneTime.print ();

if (doneTime.after (currentTime)) {

cout << "The bread will be done after it starts." << endl;

}

}

Again, main.cpp has to include the header file.
It may not be obvious why it is useful to break such a small program into

three pieces. In fact, most of the advantages come when we are working with
larger programs:

Reuse: Once you have written a structure like Time, you might find it useful
in more than one program. By separating the definition of Time from
main.cpp, you make is easy to include the Time structure in another
program.

Managing interactions: As systems become large, the number of interactions
between components grows and quickly becomes unmanageable. It is often
useful to minimize these interactions by separating modules like Time.cpp
from the programs that use them.

Separate compilation: Separate files can be compiled separately and then
linked into a single program later. The details of how to do this depend
on your programming environment. As the program gets large, separate
compilation can save a lot of time, since you usually need to compile only
a few files at a time.

For small programs like the ones in this book, there is no great advantage
to splitting up programs. But it is good for you to know about this feature,
especially since it explains one of the statements that appeared in the first
program we wrote:

#include <iostream.h>

iostream.h is the header file that contains declarations for cin and cout and
the functions that operate on them. When you compile your program, you need
the information in that header file.

11.11. GLOSSARY 119

The implementations of those functions are stored in a library, sometimes
called the “Standard Library” that gets linked to your program automatically.
The nice thing is that you don’t have to recompile the library every time you
compile a program. For the most part the library doesn’t change, so there is no
reason to recompile it.

11.11 Glossary

member function: A function that operates on an object that is passed as an
implicit parameter named this.

nonmember function: A function that is not a member of any structure def-
inition. Also called a “free-standing” function.

invoke: To call a function “on” an object, in order to pass the object as an
implicit parameter.

current object: The object on which a member function is invoked. Inside
the member function, we can refer to the current object implicitly, or by
using the keyword this.

this: A keyword that refers to the current object. this is a pointer, which
makes it difficult to use, since we do not cover pointers in this book.

interface: A description of how a function is used, including the number and
types of the parameters and the type of the return value.

function declaration: A statement that declares the interface to a function
without providing the body. Declarations of member functions appear
inside structure definitions even if the definitions appear outside.

implementation: The body of a function, or the details of how a function
works.

constructor: A special function that initializes the instance variables of a
newly-created object.

120 CHAPTER 11. MEMBER FUNCTIONS

Chapter 12

Vectors of Objects

12.1 Composition

By now we have seen several examples of composition (the ability to combine
language features in a variety of arrangements). One of the first examples we
saw was using a function invocation as part of an expression. Another example
is the nested structure of statements: you can put an if statement within a
while loop, or within another if statement, etc.

Having seen this pattern, and having learned about vectors and objects, you
should not be surprised to learn that you can have vectors of objects. In fact,
you can also have objects that contain vectors (as instance variables); you can
have vectors that contain vectors; you can have objects that contain objects,
and so on.

In the next two chapters we will look at some examples of these combinations,
using Card objects as a case study.

12.2 Card objects

If you are not familiar with common playing cards, now would be a good time to
get a deck, or else this chapter might not make much sense. There are 52 cards
in a deck, each of which belongs to one of four suits and one of 13 ranks. The
suits are Spades, Hearts, Diamonds and Clubs (in descending order in Bridge).
The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen and King. Depending
on what game you are playing, the rank of the Ace may be higher than King or
lower than 2.

If we want to define a new object to represent a playing card, it is pretty
obvious what the instance variables should be: rank and suit. It is not as ob-
vious what type the instance variables should be. One possibility is apstrings,
containing things like "Spade" for suits and "Queen" for ranks. One problem
with this implementation is that it would not be easy to compare cards to see
which had higher rank or suit.

121

122 CHAPTER 12. VECTORS OF OBJECTS

An alternative is to use integers to encode the ranks and suits. By “encode,”
I do not mean what some people think, which is to encrypt, or translate into
a secret code. What a computer scientist means by “encode” is something like
“define a mapping between a sequence of numbers and the things I want to
represent.” For example,

Spades 7→ 3
Hearts 7→ 2
Diamonds 7→ 1
Clubs 7→ 0

The symbol 7→ is mathematical notation for “maps to.” The obvious feature
of this mapping is that the suits map to integers in order, so we can compare
suits by comparing integers. The mapping for ranks is fairly obvious; each of
the numerical ranks maps to the corresponding integer, and for face cards:

Jack 7→ 11
Queen 7→ 12
King 7→ 13

The reason I am using mathematical notation for these mappings is that
they are not part of the C++ program. They are part of the program design,
but they never appear explicitly in the code. The class definition for the Card

type looks like this:

struct Card

{

int suit, rank;

Card ();

Card (int s, int r);

};

Card::Card () {

suit = 0; rank = 0;

}

Card::Card (int s, int r) {

suit = s; rank = r;

}

There are two constructors for Cards. You can tell that they are constructors
because they have no return type and their name is the same as the name of the
structure. The first constructor takes no arguments and initializes the instance
variables to a useless value (the zero of clubs).

The second constructor is more useful. It takes two parameters, the suit and
rank of the card.

12.3. THE PRINTCARD FUNCTION 123

The following code creates an object named threeOfClubs that represents
the 3 of Clubs:

Card threeOfClubs (0, 3);

The first argument, 0 represents the suit Clubs, the second, naturally, represents
the rank 3.

12.3 The printCard function

When you create a new type, the first step is usually to declare the instance
variables and write constructors. The second step is often to write a function
that prints the object in human-readable form.

In the case of Card objects, “human-readable” means that we have to map
the internal representation of the rank and suit onto words. A natural way to
do that is with a vector of apstrings. You can create a vector of apstrings
the same way you create an vector of other types:

apvector<apstring> suits (4);

Of course, in order to use apvectors and apstrings, you will have to include
the header files for both1.

To initialize the elements of the vector, we can use a series of assignment
statements.

suits[0] = "Clubs";

suits[1] = "Diamonds";

suits[2] = "Hearts";

suits[3] = "Spades";

A state diagram for this vector looks like this:

1apvectors are a little different from apstrings in this regard. The file apvector.cpp

contains a template that allows the compiler to create vectors of various kinds. The first time

you use a vector of integers, the compiler generates code to support that kind of vector. If you

use a vector of apstrings, the compiler generates different code to handle that kind of vector.

As a result, it is usually sufficient to include the header file apvector.h; you do not have to

compile apvector.cpp at all! Unfortunately, if you do, you are likely to get a long stream of

error messages. I hope this footnote helps you avoid an unpleasant surprise, but the details

in your development environment may differ.

124 CHAPTER 12. VECTORS OF OBJECTS

"Clubs"

"Diamonds"

"Hearts"

"Spades"

suits

We can build a similar vector to decode the ranks. Then we can select the
appropriate elements using the suit and rank as indices. Finally, we can write
a function called print that outputs the card on which it is invoked:

void Card::print () const

{

apvector<apstring> suits (4);

suits[0] = "Clubs";

suits[1] = "Diamonds";

suits[2] = "Hearts";

suits[3] = "Spades";

apvector<apstring> ranks (14);

ranks[1] = "Ace";

ranks[2] = "2";

ranks[3] = "3";

ranks[4] = "4";

ranks[5] = "5";

ranks[6] = "6";

ranks[7] = "7";

ranks[8] = "8";

ranks[9] = "9";

ranks[10] = "10";

ranks[11] = "Jack";

ranks[12] = "Queen";

ranks[13] = "King";

cout << ranks[rank] << " of " << suits[suit] << endl;

}

The expression suits[suit] means “use the instance variable suit from the
current object as an index into the vector named suits, and select the appro-
priate string.”

12.4. THE EQUALS FUNCTION 125

Because print is a Card member function, it can refer to the instance vari-
ables of the current object implicitly (without having to use dot notation to
specify the object). The output of this code

Card card (1, 11);

card.print ();

is Jack of Diamonds.
You might notice that we are not using the zeroeth element of the ranks

vector. That’s because the only valid ranks are 1–13. By leaving an unused
element at the beginning of the vector, we get an encoding where 2 maps to
“2”, 3 maps to “3”, etc. From the point of view of the user, it doesn’t matter
what the encoding is, since all input and output uses human-readable formats.
On the other hand, it is often helpful for the programmer if the mappings are
easy to remember.

12.4 The equals function

In order for two cards to be equal, they have to have the same rank and the
same suit. Unfortunately, the == operator does not work for user-defined types
like Card, so we have to write a function that compares two cards. We’ll call it
equals. It is also possible to write a new definition for the == operator, but we
will not cover that in this book.

It is clear that the return value from equals should be a boolean that in-
dicates whether the cards are the same. It is also clear that there have to be
two Cards as parameters. But we have one more choice: should equals be a
member function or a free-standing function?

As a member function, it looks like this:

bool Card::equals (const Card& c2) const

{

return (rank == c2.rank && suit == c2.suit);

}

To use this function, we have to invoke it on one of the cards and pass the other
as an argument:

Card card1 (1, 11);

Card card2 (1, 11);

if (card1.equals(card2)) {

cout << "Yup, that’s the same card." << endl;

}

This method of invocation always seems strange to me when the function is
something like equals, in which the two arguments are symmetric. What I

126 CHAPTER 12. VECTORS OF OBJECTS

mean by symmetric is that it does not matter whether I ask “Is A equal to B?”
or “Is B equal to A?” In this case, I think it looks better to rewrite equals as
a nonmember function:

bool equals (const Card& c1, const Card& c2)

{

return (c1.rank == c2.rank && c1.suit == c2.suit);

}

When we call this version of the function, the arguments appear side-by-side in
a way that makes more logical sense, to me at least.

if (equals (card1, card2)) {

cout << "Yup, that’s the same card." << endl;

}

Of course, this is a matter of taste. My point here is that you should be
comfortable writing both member and nonmember functions, so that you can
choose the interface that works best depending on the circumstance.

12.5 The isGreater function

For basic types like int and double, there are comparison operators that com-
pare values and determine when one is greater or less than another. These
operators (< and > and the others) don’t work for user-defined types. Just as
we did for the == operator, we will write a comparison function that plays the
role of the > operator. Later, we will use this function to sort a deck of cards.

Some sets are totally ordered, which means that you can compare any two
elements and tell which is bigger. For example, the integers and the floating-
point numbers are totally ordered. Some sets are unordered, which means that
there is no meaningful way to say that one element is bigger than another. For
example, the fruits are unordered, which is why we cannot compare apples and
oranges. As another example, the bool type is unordered; we cannot say that
true is greater than false.

The set of playing cards is partially ordered, which means that sometimes
we can compare cards and sometimes not. For example, I know that the 3 of
Clubs is higher than the 2 of Clubs because it has higher rank, and the 3 of
Diamonds is higher than the 3 of Clubs because it has higher suit. But which
is better, the 3 of Clubs or the 2 of Diamonds? One has a higher rank, but the
other has a higher suit.

In order to make cards comparable, we have to decide which is more impor-
tant, rank or suit. To be honest, the choice is completely arbitrary. For the
sake of choosing, I will say that suit is more important, because when you buy
a new deck of cards, it comes sorted with all the Clubs together, followed by all
the Diamonds, and so on.

12.6. VECTORS OF CARDS 127

With that decided, we can write isGreater. Again, the arguments (two
Cards) and the return type (boolean) are obvious, and again we have to choose
between a member function and a nonmember function. This time, the argu-
ments are not symmetric. It matters whether we want to know “Is A greater
than B?” or “Is B greater than A?” Therefore I think it makes more sense to
write isGreater as a member function:

bool Card::isGreater (const Card& c2) const

{

// first check the suits

if (suit > c2.suit) return true;

if (suit < c2.suit) return false;

// if the suits are equal, check the ranks

if (rank > c2.rank) return true;

if (rank < c2.rank) return false;

// if the ranks are also equal, return false

return false;

}

Then when we invoke it, it is obvious from the syntax which of the two possible
questions we are asking:

Card card1 (2, 11);

Card card2 (1, 11);

if (card1.isGreater (card2)) {

card1.print ();

cout << "is greater than" << endl;

card2.print ();

}

You can almost read it like English: “If card1 isGreater card2 ...” The output
of this program is

Jack of Hearts

is greater than

Jack of Diamonds

According to isGreater, aces are less than deuces (2s). As an exercise, fix it
so that aces are ranked higher than Kings, as they are in most card games.

12.6 Vectors of cards

The reason I chose Cards as the objects for this chapter is that there is an
obvious use for a vector of cards—a deck. Here is some code that creates a new
deck of 52 cards:

128 CHAPTER 12. VECTORS OF OBJECTS

apvector<Card> deck (52);

Here is the state diagram for this object:

rank:

suit: 0

0 rank:

suit: 0

0 rank:

suit: 0

0 rank:

suit: 0

0

210 51

deck

The three dots represent the 48 cards I didn’t feel like drawing. Keep in
mind that we haven’t initialized the instance variables of the cards yet. In some
environments, they will get initialized to zero, as shown in the figure, but in
others they could contain any possible value.

One way to initialize them would be to pass a Card as a second argument
to the constructor:

Card aceOfSpades (3, 1);

apvector<Card> deck (52, aceOfSpades);

This code builds a deck with 52 identical cards, like a special deck for a magic
trick. Of course, it makes more sense to build a deck with 52 different cards in
it. To do that we use a nested loop.

The outer loop enumerates the suits, from 0 to 3. For each suit, the inner
loop enumerates the ranks, from 1 to 13. Since the outer loop iterates 4 times,
and the inner loop iterates 13 times, the total number of times the body is
executed is 52 (13 times 4).

int i = 0;

for (int suit = 0; suit <= 3; suit++) {

for (int rank = 1; rank <= 13; rank++) {

deck[i].suit = suit;

deck[i].rank = rank;

i++;

}

}

I used the variable i to keep track of where in the deck the next card should go.
Notice that we can compose the syntax for selecting an element from an

array (the [] operator) with the syntax for selecting an instance variable from
an object (the dot operator). The expression deck[i].suit means “the suit of
the ith card in the deck”.

12.7. THE PRINTDECK FUNCTION 129

As an exercise, encapsulate this deck-building code in a function called
buildDeck that takes no parameters and that returns a fully-populated vec-
tor of Cards.

12.7 The printDeck function

Whenever you are working with vectors, it is convenient to have a function that
prints the contents of the vector. We have seen the pattern for traversing a
vector several times, so the following function should be familiar:

void printDeck (const apvector<Card>& deck) {

for (int i = 0; i < deck.length(); i++) {

deck[i].print ();

}

}

By now it should come as no surprise that we can compose the syntax for vector
access with the syntax for invoking a function.

Since deck has type apvector<Card>, an element of deck has type Card.
Therefore, it is legal to invoke print on deck[i].

12.8 Searching

The next function I want to write is find, which searches through a vector of
Cards to see whether it contains a certain card. It may not be obvious why this
function would be useful, but it gives me a chance to demonstrate two ways to
go searching for things, a linear search and a bisection search.

Linear search is the more obvious of the two; it involves traversing the deck
and comparing each card to the one we are looking for. If we find it we return
the index where the card appears. If it is not in the deck, we return -1.

int find (const Card& card, const apvector<Card>& deck) {

for (int i = 0; i < deck.length(); i++) {

if (equals (deck[i], card)) return i;

}

return -1;

}

The loop here is exactly the same as the loop in printDeck. In fact, when I
wrote the program, I copied it, which saved me from having to write and debug
it twice.

Inside the loop, we compare each element of the deck to card. The function
returns as soon as it discovers the card, which means that we do not have to
traverse the entire deck if we find the card we are looking for. If the loop
terminates without finding the card, we know the card is not in the deck and
return -1.

130 CHAPTER 12. VECTORS OF OBJECTS

To test this function, I wrote the following:

apvector<Card> deck = buildDeck ();

int index = card.find (deck[17]);

cout << "I found the card at index = " << index << endl;

The output of this code is

I found the card at index = 17

12.9 Bisection search

If the cards in the deck are not in order, there is no way to search that is faster
than the linear search. We have to look at every card, since otherwise there is
no way to be certain the card we want is not there.

But when you look for a word in a dictionary, you don’t search linearly
through every word. The reason is that the words are in alphabetical order. As
a result, you probably use an algorithm that is similar to a bisection search:

1. Start in the middle somewhere.

2. Choose a word on the page and compare it to the word you are looking
for.

3. If you found the word you are looking for, stop.

4. If the word you are looking for comes after the word on the page, flip to
somewhere later in the dictionary and go to step 2.

5. If the word you are looking for comes before the word on the page, flip to
somewhere earlier in the dictionary and go to step 2.

If you ever get to the point where there are two adjacent words on the page
and your word comes between them, you can conclude that your word is not in
the dictionary. The only alternative is that your word has been misfiled some-
where, but that contradicts our assumption that the words are in alphabetical
order.

In the case of a deck of cards, if we know that the cards are in order, we
can write a version of find that is much faster. The best way to write a bisec-
tion search is with a recursive function. That’s because bisection is naturally
recursive.

The trick is to write a function called findBisect that takes two indices as
parameters, low and high, indicating the segment of the vector that should be
searched (including both low and high).

1. To search the vector, choose an index between low and high, and call it
mid. Compare the card at mid to the card you are looking for.

12.9. BISECTION SEARCH 131

2. If you found it, stop.

3. If the card at mid is higher than your card, search in the range from low

to mid-1.

4. If the card at mid is lower than your card, search in the range from mid+1

to high.

Steps 3 and 4 look suspiciously like recursive invocations. Here’s what this all
looks like translated into C++:

int findBisect (const Card& card, const apvector<Card>& deck,

int low, int high) {

int mid = (high + low) / 2;

// if we found the card, return its index

if (equals (deck[mid], card)) return mid;

// otherwise, compare the card to the middle card

if (deck[mid].isGreater (card)) {

// search the first half of the deck

return findBisect (card, deck, low, mid-1);

} else {

// search the second half of the deck

return findBisect (card, deck, mid+1, high);

}

}

Although this code contains the kernel of a bisection search, it is still missing
a piece. As it is currently written, if the card is not in the deck, it will recurse
forever. We need a way to detect this condition and deal with it properly (by
returning -1).

The easiest way to tell that your card is not in the deck is if there are no

cards in the deck, which is the case if high is less than low. Well, there are still
cards in the deck, of course, but what I mean is that there are no cards in the
segment of the deck indicated by low and high.

With that line added, the function works correctly:

int findBisect (const Card& card, const apvector<Card>& deck,

int low, int high) {

cout << low << ", " << high << endl;

if (high < low) return -1;

int mid = (high + low) / 2;

132 CHAPTER 12. VECTORS OF OBJECTS

if (equals (deck[mid], card)) return mid;

if (deck[mid].isGreater (card)) {

return findBisect (card, deck, low, mid-1);

} else {

return findBisect (card, deck, mid+1, high);

}

}

I added an output statement at the beginning so I could watch the sequence of
recursive calls and convince myself that it would eventually reach the base case.
I tried out the following code:

cout << findBisect (deck, deck[23], 0, 51));

And got the following output:

0, 51

0, 24

13, 24

19, 24

22, 24

I found the card at index = 23

Then I made up a card that is not in the deck (the 15 of Diamonds), and tried
to find it. I got the following:

0, 51

0, 24

13, 24

13, 17

13, 14

13, 12

I found the card at index = -1

These tests don’t prove that this program is correct. In fact, no amount of
testing can prove that a program is correct. On the other hand, by looking at
a few cases and examining the code, you might be able to convince yourself.

The number of recursive calls is fairly small, typically 6 or 7. That means
we only had to call equals and isGreater 6 or 7 times, compared to up to 52
times if we did a linear search. In general, bisection is much faster than a linear
search, especially for large vectors.

Two common errors in recursive programs are forgetting to include a base
case and writing the recursive call so that the base case is never reached. Ei-
ther error will cause an infinite recursion, in which case C++ will (eventually)
generate a run-time error.

12.10. DECKS AND SUBDECKS 133

12.10 Decks and subdecks

Looking at the interface to findBisect

int findBisect (const Card& card, const apvector<Card>& deck,

int low, int high) {

it might make sense to treat three of the parameters, deck, low and high, as a
single parameter that specifies a subdeck.

This kind of thing is quite common, and I sometimes think of it as an
abstract parameter. What I mean by “abstract,” is something that is not lit-
erally part of the program text, but which describes the function of the program
at a higher level.

For example, when you call a function and pass a vector and the bounds low
and high, there is nothing that prevents the called function from accessing parts
of the vector that are out of bounds. So you are not literally sending a subset
of the deck; you are really sending the whole deck. But as long as the recipient
plays by the rules, it makes sense to think of it, abstractly, as a subdeck.

There is one other example of this kind of abstraction that you might have
noticed in Section 9.3, when I referred to an “empty” data structure. The reason
I put “empty” in quotation marks was to suggest that it is not literally accurate.
All variables have values all the time. When you create them, they are given
default values. So there is no such thing as an empty object.

But if the program guarantees that the current value of a variable is never
read before it is written, then the current value is irrelevant. Abstractly, it
makes sense to think of such a variable as “empty.”

This kind of thinking, in which a program comes to take on meaning beyond
what is literally encoded, is a very important part of thinking like a computer
scientist. Sometimes, the word “abstract” gets used so often and in so many
contexts that it is hard to interpret. Nevertheless, abstraction is a central idea
in computer science (as well as many other fields).

A more general definition of “abstraction” is “The process of modeling a
complex system with a simplified description in order to suppress unnecessary
details while capturing relevant behavior.”

12.11 Glossary

encode: To represent one set of values using another set of values, by con-
structing a mapping between them.

abstract parameter: A set of parameters that act together as a single param-
eter.

134 CHAPTER 12. VECTORS OF OBJECTS

Chapter 13

Objects of Vectors

13.1 Enumerated types

In the previous chapter I talked about mappings between real-world values like
rank and suit, and internal representations like integers and strings. Although
we created a mapping between ranks and integers, and between suits and in-
tegers, I pointed out that the mapping itself does not appear as part of the
program.

Actually, C++ provides a feature called and enumerated type that makes
it possible to (1) include a mapping as part of the program, and (2) define the
set of values that make up the mapping. For example, here is the definition of
the enumerated types Suit and Rank:

enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES };

enum Rank { ACE=1, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE,

TEN, JACK, QUEEN, KING };

By default, the first value in the enumerated type maps to 0, the second to 1,
and so on. Within the Suit type, the value CLUBS is represented by the integer
0, DIAMONDS is represented by 1, etc.

The definition of Rank overrides the default mapping and specifies that ACE
should be represented by the integer 1. The other values follow in the usual
way.

Once we have defined these types, we can use them anywhere. For example,
the instance variables rank and suit are can be declared with type Rank and
Suit:

struct Card

{

Rank rank;

Suit suit;

135

136 CHAPTER 13. OBJECTS OF VECTORS

Card (Suit s, Rank r);

};

That the types of the parameters for the constructor have changed, too. Now,
to create a card, we can use the values from the enumerated type as arguments:

Card card (DIAMONDS, JACK);

By convention, the values in enumerated types have names with all capital
letters. This code is much clearer than the alternative using integers:

Card card (1, 11);

Because we know that the values in the enumerated types are represented as
integers, we can use them as indices for a vector. Therefore the old print

function will work without modification. We have to make some changes in
buildDeck, though:

int index = 0;

for (Suit suit = CLUBS; suit <= SPADES; suit = Suit(suit+1)) {

for (Rank rank = ACE; rank <= KING; rank = Rank(rank+1)) {

deck[index].suit = suit;

deck[index].rank = rank;

index++;

}

}

In some ways, using enumerated types makes this code more readable, but there
is one complication. Strictly speaking, we are not allowed to do arithmetic with
enumerated types, so suit++ is not legal. On the other hand, in the expression
suit+1, C++ automatically converts the enumerated type to integer. Then we
can take the result and typecast it back to the enumerated type:

suit = Suit(suit+1);

rank = Rank(rank+1);

Actually, there is a better way to do this—we can define the ++ operator for
enumerated types—but that is beyond the scope of this book.

13.2 switch statement

It’s hard to mention enumerated types without mentioning switch statements,
because they often go hand in hand. A switch statement is an alternative to
a chained conditional that is syntactically prettier and often more efficient. It
looks like this:

13.2. SWITCH STATEMENT 137

switch (symbol) {

case ’+’:

perform_addition ();

break;

case ’*’:

perform_multiplication ();

break;

default:

cout << "I only know how to perform addition and multiplication" << endl;

break;

}

This switch statement is equivalent to the following chained conditional:

if (symbol == ’+’) {

perform_addition ();

} else if (symbol == ’*’) {

perform_multiplication ();

} else {

cout << "I only know how to perform addition and multiplication" << endl;

}

The break statements are necessary in each branch in a switch statement be-
cause otherwise the flow of execution “falls through” to the next case. Without
the break statements, the symbol + would make the program perform addition,
and then perform multiplication, and then print the error message. Occasionally
this feature is useful, but most of the time it is a source of errors when people
forget the break statements.

switch statements work with integers, characters, and enumerated types.
For example, to convert a Suit to the corresponding string, we could use some-
thing like:

switch (suit) {

case CLUBS: return "Clubs";

case DIAMONDS: return "Diamonds";

case HEARTS: return "Hearts";

case SPADES: return "Spades";

default: return "Not a valid suit";

}

In this case we don’t need break statements because the return statements
cause the flow of execution to return to the caller instead of falling through to
the next case.

In general it is good style to include a default case in every switch state-
ment, to handle errors or unexpected values.

138 CHAPTER 13. OBJECTS OF VECTORS

13.3 Decks

In the previous chapter, we worked with a vector of objects, but I also mentioned
that it is possible to have an object that contains a vector as an instance variable.
In this chapter I am going to create a new object, called a Deck, that contains
a vector of Cards.

The structure definition looks like this

struct Deck {

apvector<Card> cards;

Deck (int n);

};

Deck::Deck (int size)

{

apvector<Card> temp (size);

cards = temp;

}

The name of the instance variable is cards to help distinguish the Deck object
from the vector of Cards that it contains.

For now there is only one constructor. It creates a local variable named
temp, which it initializes by invoking the constructor for the apvector class,
passing the size as a parameter. Then it copies the vector from temp into the
instance variable cards.

Now we can create a deck of cards like this:

Deck deck (52);

Here is a state diagram showing what a Deck object looks like:

rank:

suit: 0

0 rank:

suit: 0

0 rank:

suit: 0

0 rank:

suit: 0

0

210 51

cards:

deck

The object named deck has a single instance variable named cards, which
is a vector of Card objects. To access the cards in a deck we have to compose

13.4. ANOTHER CONSTRUCTOR 139

the syntax for accessing an instance variable and the syntax for selecting an
element from an array. For example, the expression deck.cards[i] is the ith
card in the deck, and deck.cards[i].suit is its suit. The following loop

for (int i = 0; i<52; i++) {

deck.cards[i].print();

}

demonstrates how to traverse the deck and output each card.

13.4 Another constructor

Now that we have a Deck object, it would be useful to initialize the cards in it.
From the previous chapter we have a function called buildDeck that we could
use (with a few adaptations), but it might be more natural to write a second
Deck constructor.

Deck::Deck ()

{

apvector<Card> temp (52);

cards = temp;

int i = 0;

for (Suit suit = CLUBS; suit <= SPADES; suit = Suit(suit+1)) {

for (Rank rank = ACE; rank <= KING; rank = Rank(rank+1)) {

cards[i].suit = suit;

cards[i].rank = rank;

i++;

}

}

}

Notice how similar this function is to buildDeck, except that we had to change
the syntax to make it a constructor. Now we can create a standard 52-card deck
with the simple declaration Deck deck;

13.5 Deck member functions

Now that we have a Deck object, it makes sense to put all the functions that
pertain to Decks in the Deck structure definition. Looking at the functions we
have written so far, one obvious candidate is printDeck (Section 12.7). Here’s
how it looks, rewritten as a Deck member function:

void Deck::print () const {

for (int i = 0; i < cards.length(); i++) {

cards[i].print ();

140 CHAPTER 13. OBJECTS OF VECTORS

}

}

As usual, we can refer to the instance variables of the current object without
using dot notation.

For some of the other functions, it is not obvious whether they should be
member functions of Card, member functions of Deck, or nonmember functions
that take Cards and Decks as parameters. For example, the version of find
in the previous chapter takes a Card and a Deck as arguments, but you could
reasonably make it a member function of either type. As an exercise, rewrite
find as a Deck member function that takes a Card as a parameter.

Writing find as a Card member function is a little tricky. Here’s my version:

int Card::find (const Deck& deck) const {

for (int i = 0; i < deck.cards.length(); i++) {

if (equals (deck.cards[i], *this)) return i;

}

return -1;

}

The first trick is that we have to use the keyword this to refer to the Card the
function is invoked on.

The second trick is that C++ does not make it easy to write structure
definitions that refer to each other. The problem is that when the compiler is
reading the first structure definition, it doesn’t know about the second one yet.

One solution is to declare Deck before Card and then define Deck afterwards:

// declare that Deck is a structure, without defining it

struct Deck;

// that way we can refer to it in the definition of Card

struct Card

{

int suit, rank;

Card ();

Card (int s, int r);

void print () const;

bool isGreater (const Card& c2) const;

int find (const Deck& deck) const;

};

// and then later we provide the definition of Deck

struct Deck {

apvector<Card> cards;

13.6. SHUFFLING 141

Deck ();

Deck (int n);

void print () const;

int find (const Card& card) const;

};

13.6 Shuffling

For most card games you need to be able to shuffle the deck; that is, put the
cards in a random order. In Section 10.5 we saw how to generate random
numbers, but it is not obvious how to use them to shuffle a deck.

One possibility is to model the way humans shuffle, which is usually by
dividing the deck in two and then reassembling the deck by choosing alternately
from each deck. Since humans usually don’t shuffle perfectly, after about 7
iterations the order of the deck is pretty well randomized. But a computer
program would have the annoying property of doing a perfect shuffle every
time, which is not really very random. In fact, after 8 perfect shuffles, you
would find the deck back in the same order you started in. For a discussion
of that claim, see http://www.wiskit.com/marilyn/craig.html or do a web
search with the keywords “perfect shuffle.”

A better shuffling algorithm is to traverse the deck one card at a time, and
at each iteration choose two cards and swap them.

Here is an outline of how this algorithm works. To sketch the program, I am
using a combination of C++ statements and English words that is sometimes
called pseudocode:

for (int i=0; i<cards.length(); i++) {

// choose a random number between i and cards.length()

// swap the ith card and the randomly-chosen card

}

The nice thing about using pseudocode is that it often makes it clear what
functions you are going to need. In this case, we need something like randomInt,
which chooses a random integer between the parameters low and high, and
swapCards which takes two indices and switches the cards at the indicated
positions.

You can probably figure out how to write randomInt by looking at Sec-
tion 10.5, although you will have to be careful about possibly generating indices
that are out of range.

You can also figure out swapCards yourself. I will leave the remaining im-
plementation of these functions as an exercise to the reader.

13.7 Sorting

Now that we have messed up the deck, we need a way to put it back in order.
Ironically, there is an algorithm for sorting that is very similar to the algorithm

142 CHAPTER 13. OBJECTS OF VECTORS

for shuffling.
Again, we are going to traverse the deck and at each location choose another

card and swap. The only difference is that this time instead of choosing the other
card at random, we are going to find the lowest card remaining in the deck.

By “remaining in the deck,” I mean cards that are at or to the right of the
index i.

for (int i=0; i<cards.length(); i++) {

// find the lowest card at or to the right of i

// swap the ith card and the lowest card

}

Again, the pseudocode helps with the design of the helper functions. In
this case we can use swapCards again, so we only need one new one, called
findLowestCard, that takes a vector of cards and an index where it should
start looking.

This process, using pseudocode to figure out what helper functions are
needed, is sometimes called top-down design, in contrast to the bottom-up
design I discussed in Section 10.8.

Once again, I am going to leave the implementation up to the reader.

13.8 Subdecks

How should we represent a hand or some other subset of a full deck? One easy
choice is to make a Deck object that has fewer than 52 cards.

We might want a function, subdeck, that takes a vector of cards and a range
of indices, and that returns a new vector of cards that contains the specified
subset of the deck:

Deck Deck::subdeck (int low, int high) const {

Deck sub (high-low+1);

for (int i = 0; i<sub.cards.length(); i++) {

sub.cards[i] = cards[low+i];

}

return sub;

}

To create the local variable named subdeck we are using the Deck constructor
that takes the size of the deck as an argument and that does not initialize the
cards. The cards get initialized when they are copied from the original deck.

The length of the subdeck is high-low+1 because both the low card and
high card are included. This sort of computation can be confusing, and lead to
“off-by-one” errors. Drawing a picture is usually the best way to avoid them.

As an exercise, write a version of findBisect that takes a subdeck as an
argument, rather than a deck and an index range. Which version is more error-
prone? Which version do you think is more efficient?

13.9. SHUFFLING AND DEALING 143

13.9 Shuffling and dealing

In Section 13.6 I wrote pseudocode for a shuffling algorithm. Assuming that
we have a function called shuffleDeck that takes a deck as an argument and
shuffles it, we can create and shuffle a deck:

Deck deck; // create a standard 52-card deck

deck.shuffle (); // shuffle it

Then, to deal out several hands, we can use subdeck:

Deck hand1 = deck.subdeck (0, 4);

Deck hand2 = deck.subdeck (5, 9);

Deck pack = deck.subdeck (10, 51);

This code puts the first 5 cards in one hand, the next 5 cards in the other, and
the rest into the pack.

When you thought about dealing, did you think we should give out one card
at a time to each player in the round-robin style that is common in real card
games? I thought about it, but then realized that it is unnecessary for a com-
puter program. The round-robin convention is intended to mitigate imperfect
shuffling and make it more difficult for the dealer to cheat. Neither of these is
an issue for a computer.

This example is a useful reminder of one of the dangers of engineering
metaphors: sometimes we impose restrictions on computers that are unnec-
essary, or expect capabilities that are lacking, because we unthinkingly extend
a metaphor past its breaking point. Beware of misleading analogies.

13.10 Mergesort

In Section 13.7, we saw a simple sorting algorithm that turns out not to be very
efficient. In order to sort n items, it has to traverse the vector n times, and each
traversal takes an amount of time that is proportional to n. The total time,
therefore, is proportional to n2.

In this section I will sketch a more efficient algorithm called mergesort.
To sort n items, mergesort takes time proportional to n log n. That may not
seem impressive, but as n gets big, the difference between n2 and n log n can be
enormous. Try out a few values of n and see.

The basic idea behind mergesort is this: if you have two subdecks, each of
which has been sorted, it is easy (and fast) to merge them into a single, sorted
deck. Try this out with a deck of cards:

1. Form two subdecks with about 10 cards each and sort them so that when
they are face up the lowest cards are on top. Place both decks face up in
front of you.

144 CHAPTER 13. OBJECTS OF VECTORS

2. Compare the top card from each deck and choose the lower one. Flip it
over and add it to the merged deck.

3. Repeat step two until one of the decks is empty. Then take the remaining
cards and add them to the merged deck.

The result should be a single sorted deck. Here’s what this looks like in
pseudocode:

Deck merge (const Deck& d1, const Deck& d2) {

// create a new deck big enough for all the cards

Deck result (d1.cards.length() + d2.cards.length());

// use the index i to keep track of where we are in

// the first deck, and the index j for the second deck

int i = 0;

int j = 0;

// the index k traverses the result deck

for (int k = 0; k<result.cards.length(); k++) {

// if d1 is empty, d2 wins; if d2 is empty, d1 wins;

// otherwise, compare the two cards

// add the winner to the new deck

}

return result;

}

I chose to make merge a nonmember function because the two arguments are
symmetric.

The best way to test merge is to build and shuffle a deck, use subdeck to
form two (small) hands, and then use the sort routine from the previous chapter
to sort the two halves. Then you can pass the two halves to merge to see if it
works.

If you can get that working, try a simple implementation of mergeSort:

Deck Deck::mergeSort () const {

// find the midpoint of the deck

// divide the deck into two subdecks

// sort the subdecks using sort

// merge the two halves and return the result

}

Notice that the current object is declared const because mergeSort does not
modify it. Instead, it creates and returns a new Deck object.

If you get that version working, the real fun begins! The magical thing about
mergesort is that it is recursive. At the point where you sort the subdecks, why

13.11. GLOSSARY 145

should you invoke the old, slow version of sort? Why not invoke the spiffy new
mergeSort you are in the process of writing?

Not only is that a good idea, it is necessary in order to achieve the perfor-
mance advantage I promised. In order to make it work, though, you have to add
a base case so that it doesn’t recurse forever. A simple base case is a subdeck
with 0 or 1 cards. If mergesort receives such a small subdeck, it can return it
unmodified, since it is already sorted.

The recursive version of mergesort should look something like this:

Deck Deck::mergeSort (Deck deck) const {

// if the deck is 0 or 1 cards, return it

// find the midpoint of the deck

// divide the deck into two subdecks

// sort the subdecks using mergesort

// merge the two halves and return the result

}

As usual, there are two ways to think about recursive programs: you can think
through the entire flow of execution, or you can make the “leap of faith.” I
have deliberately constructed this example to encourage you to make the leap
of faith.

When you were using sort to sort the subdecks, you didn’t feel compelled
to follow the flow of execution, right? You just assumed that the sort func-
tion would work because you already debugged it. Well, all you did to make
mergeSort recursive was replace one sort algorithm with another. There is no
reason to read the program differently.

Well, actually you have to give some thought to getting the base case right
and making sure that you reach it eventually, but other than that, writing the
recursive version should be no problem. Good luck!

13.11 Glossary

pseudocode: A way of designing programs by writing rough drafts in a com-
bination of English and C++.

helper function: Often a small function that does not do anything enormously
useful by itself, but which helps another, more useful, function.

bottom-up design: A method of program development that uses pseudocode
to sketch solutions to large problems and design the interfaces of helper
functions.

mergesort: An algorithm for sorting a collection of values. Mergesort is faster
than the simple algorithm in the previous chapter, especially for large
collections.

146 CHAPTER 13. OBJECTS OF VECTORS

Chapter 14

Classes and invariants

14.1 Private data and classes

I have used the word “encapsulation” in this book to refer to the process of
wrapping up a sequence of instructions in a function, in order to separate the
function’s interface (how to use it) from its implementation (how it does what
it does).

This kind of encapsulation might be called “functional encapsulation,” to
distinguish it from “data encapsulation,” which is the topic of this chapter.
Data encapsulation is based on the idea that each structure definition should
provide a set of functions that apply to the structure, and prevent unrestricted
access to the internal representation.

One use of data encapsulation is to hide implementation details from users
or programmers that don’t need to know them.

For example, there are many possible representations for a Card, including
two integers, two strings and two enumerated types. The programmer who
writes the Card member functions needs to know which implementation to use,
but someone using the Card structure should not have to know anything about
its internal structure.

As another example, we have been using apstring and apvector objects
without ever discussing their implementations. There are many possibilities,
but as “clients” of these libraries, we don’t need to know.

In C++, the most common way to enforce data encapsulation is to prevent
client programs from accessing the instance variables of an object. The keyword
private is used to protect parts of a structure definition. For example, we could
have written the Card definition:

struct Card

{

private:

int suit, rank;

147

148 CHAPTER 14. CLASSES AND INVARIANTS

public:

Card ();

Card (int s, int r);

int getRank () const { return rank; }

int getSuit () const { return suit; }

void setRank (int r) { rank = r; }

void setSuit (int s) { suit = s; }

};

There are two sections of this definition, a private part and a public part. The
functions are public, which means that they can be invoked by client programs.
The instance variables are private, which means that they can be read and
written only by Card member functions.

It is still possible for client programs to read and write the instance variables
using the accessor functions (the ones beginning with get and set). On the
other hand, it is now easy to control which operations clients can perform on
which instance variables. For example, it might be a good idea to make cards
“read only” so that after they are constructed, they cannot be changed. To do
that, all we have to do is remove the set functions.

Another advantage of using accessor functions is that we can change the
internal representations of cards without having to change any client programs.

14.2 What is a class?

In most object-oriented programming languages, a class is a user-defined type
that includes a set of functions. As we have seen, structures in C++ meet the
general definition of a class.

But there is another feature in C++ that also meets this definition; confus-
ingly, it is called a class. In C++, a class is just a structure whose instance
variables are private by default. For example, I could have written the Card

definition:

class Card

{

int suit, rank;

public:

Card ();

Card (int s, int r);

int getRank () const { return rank; }

int getSuit () const { return suit; }

int setRank (int r) { rank = r; }

int setSuit (int s) { suit = s; }

};

14.3. COMPLEX NUMBERS 149

I replaced the word struct with the word class and removed the private:

label. This result of the two definitions is exactly the same.

In fact, anything that can be written as a struct can also be written as a
class, just by adding or removing labels. There is no real reason to choose one
over the other, except that as a stylistic choice, most C++ programmers use
class.

Also, it is common to refer to all user-defined types in C++ as “classes,”
regardless of whether they are defined as a struct or a class.

14.3 Complex numbers

As a running example for the rest of this chapter we will consider a class def-
inition for complex numbers. Complex numbers are useful for many branches
of mathematics and engineering, and many computations are performed using
complex arithmetic. A complex number is the sum of a real part and an imag-
inary part, and is usually written in the form x + yi, where x is the real part,
y is the imaginary part, and i represents the square root of -1.

The following is a class definition for a user-defined type called Complex:

class Complex

{

double real, imag;

public:

Complex () { }

Complex (double r, double i) { real = r; imag = i; }

};

Because this is a class definition, the instance variables real and imag are
private, and we have to include the label public: to allow client code to invoke
the constructors.

As usual, there are two constructors: one takes no parameters and does
nothing; the other takes two parameters and uses them to initialize the instance
variables.

So far there is no real advantage to making the instance variables private.
Let’s make things a little more complicated; then the point might be clearer.

There is another common representation for complex numbers that is some-
times called “polar form” because it is based on polar coordinates. Instead of
specifying the real part and the imaginary part of a point in the complex plane,
polar coordinates specify the direction (or angle) of the point relative to the
origin, and the distance (or magnitude) of the point.

The following figure shows the two coordinate systems graphically.

150 CHAPTER 14. CLASSES AND INVARIANTS

Cartesian coordinates Polar coordinates

real axis

imaginary axis

angle

magnitude

Complex numbers in polar coordinates are written reiθ, where r is the mag-
nitude (radius), and θ is the angle in radians.

Fortunately, it is easy to convert from one form to another. To go from
Cartesian to polar,

r =
√

x2 + y2

θ = arctan(y/x)

To go from polar to Cartesian,

x = r cos θ

y = r sin θ

So which representation should we use? Well, the whole reason there are
multiple representations is that some operations are easier to perform in Carte-
sian coordinates (like addition), and others are easier in polar coordinates (like
multiplication). One option is that we can write a class definition that uses both

representations, and that converts between them automatically, as needed.

class Complex

{

double real, imag;

double mag, theta;

bool cartesian, polar;

public:

Complex () { cartesian = false; polar = false; }

Complex (double r, double i)

14.4. ACCESSOR FUNCTIONS 151

{

real = r; imag = i;

cartesian = true; polar = false;

}

};

There are now six instance variables, which means that this representation will
take up more space than either of the others, but we will see that it is very
versatile.

Four of the instance variables are self-explanatory. They contain the real
part, the imaginary part, the angle and the magnitude of the complex number.
The other two variables, cartesian and polar are flags that indicate whether
the corresponding values are currently valid.

For example, the do-nothing constructor sets both flags to false to indicate
that this object does not contain a valid complex number (yet), in either repre-
sentation.

The second constructor uses the parameters to initialize the real and imagi-
nary parts, but it does not calculate the magnitude or angle. Setting the polar

flag to false warns other functions not to access mag or theta until they have
been set.

Now it should be clearer why we need to keep the instance variables private.
If client programs were allowed unrestricted access, it would be easy for them
to make errors by reading uninitialized values. In the next few sections, we will
develop accessor functions that will make those kinds of mistakes impossible.

14.4 Accessor functions

By convention, accessor functions have names that begin with get and end with
the name of the instance variable they fetch. The return type, naturally, is the
type of the corresponding instance variable.

In this case, the accessor functions give us an opportunity to make sure that
the value of the variable is valid before we return it. Here’s what getReal looks
like:

double Complex::getReal ()

{

if (cartesian == false) calculateCartesian ();

return real;

}

If the cartesian flag is true then real contains valid data, and we can just
return it. Otherwise, we have to call calculateCartesian to convert from
polar coordinates to Cartesian coordinates:

void Complex::calculateCartesian ()

{

152 CHAPTER 14. CLASSES AND INVARIANTS

real = mag * cos (theta);

imag = mag * sin (theta);

cartesian = true;

}

Assuming that the polar coordinates are valid, we can calculate the Cartesian
coordinates using the formulas from the previous section. Then we set the
cartesian flag, indicating that real and imag now contain valid data.

As an exercise, write a corresponding function called calculatePolar and
then write getMag and getTheta. One unusual thing about these accessor
functions is that they are not const, because invoking them might modify the
instance variables.

14.5 Output

As usual when we define a new class, we want to be able to output objects in a
human-readable form. For Complex objects, we could use two functions:

void Complex::printCartesian ()

{

cout << getReal() << " + " << getImag() << "i" << endl;

}

void Complex::printPolar ()

{

cout << getMag() << " e^ " << getTheta() << "i" << endl;

}

The nice thing here is that we can output any Complex object in either format
without having to worry about the representation. Since the output functions
use the accessor functions, the program will compute automatically any values
that are needed.

The following code creates a Complex object using the second constructor.
Initially, it is in Cartesian format only. When we invoke printCartesian it
accesses real and imag without having to do any conversions.

Complex c1 (2.0, 3.0);

c1.printCartesian();

c1.printPolar();

When we invoke printPolar, and printPolar invokes getMag, the program
is forced to convert to polar coordinates and store the results in the instance
variables. The good news is that we only have to do the conversion once. When
printPolar invokes getTheta, it will see that the polar coordinates are valid
and return theta immediately.

The output of this code is:

14.6. A FUNCTION ON COMPLEX NUMBERS 153

2 + 3i

3.60555 e^ 0.982794i

14.6 A function on Complex numbers

A natural operation we might want to perform on complex numbers is addition.
If the numbers are in Cartesian coordinates, addition is easy: you just add the
real parts together and the imaginary parts together. If the numbers are in
polar coordinates, it is easiest to convert them to Cartesian coordinates and
then add them.

Again, it is easy to deal with these cases if we use the accessor functions:

Complex add (Complex& a, Complex& b)

{

double real = a.getReal() + b.getReal();

double imag = a.getImag() + b.getImag();

Complex sum (real, imag);

return sum;

}

Notice that the arguments to add are not const because they might be modified
when we invoke the accessors. To invoke this function, we would pass both
operands as arguments:

Complex c1 (2.0, 3.0);

Complex c2 (3.0, 4.0);

Complex sum = add (c1, c2);

sum.printCartesian();

The output of this program is

5 + 7i

14.7 Another function on Complex numbers

Another operation we might want is multiplication. Unlike addition, multipli-
cation is easy if the numbers are in polar coordinates and hard if they are in
Cartesian coordinates (well, a little harder, anyway).

In polar coordinates, we can just multiply the magnitudes and add the an-
gles. As usual, we can use the accessor functions without worrying about the
representation of the objects.

Complex mult (Complex& a, Complex& b)

{

double mag = a.getMag() * b.getMag()

154 CHAPTER 14. CLASSES AND INVARIANTS

double theta = a.getTheta() + b.getTheta();

Complex product;

product.setPolar (mag, theta);

return product;

}

A small problem we encounter here is that we have no constructor that accepts
polar coordinates. It would be nice to write one, but remember that we can only
overload a function (even a constructor) if the different versions take different
parameters. In this case, we would like a second constructor that also takes two
doubles, and we can’t have that.

An alternative it to provide an accessor function that sets the instance vari-
ables. In order to do that properly, though, we have to make sure that when
mag and theta are set, we also set the polar flag. At the same time, we have
to make sure that the cartesian flag is unset. That’s because if we change the
polar coordinates, the cartesian coordinates are no longer valid.

void Complex::setPolar (double m, double t)

{

mag = m; theta = t;

cartesian = false; polar = true;

}

As an exercise, write the corresponding function named setCartesian.
To test the mult function, we can try something like:

Complex c1 (2.0, 3.0);

Complex c2 (3.0, 4.0);

Complex product = mult (c1, c2);

product.printCartesian();

The output of this program is

-6 + 17i

There is a lot of conversion going on in this program behind the scenes. When
we call mult, both arguments get converted to polar coordinates. The result is
also in polar format, so when we invoke printCartesian it has to get converted
back. Really, it’s amazing that we get the right answer!

14.8 Invariants

There are several conditions we expect to be true for a proper Complex object.
For example, if the cartesian flag is set then we expect real and imag to
contain valid data. Similarly, if polar is set, we expect mag and theta to be
valid. Finally, if both flags are set then we expect the other four variables to

14.9. PRECONDITIONS 155

be consistent; that is, they should be specifying the same point in two different
formats.

These kinds of conditions are called invariants, for the obvious reason that
they do not vary—they are always supposed to be true. One of the ways to write
good quality code that contains few bugs is to figure out what invariants are
appropriate for your classes, and write code that makes it impossible to violate
them.

One of the primary things that data encapsulation is good for is helping to
enforce invariants. The first step is to prevent unrestricted access to the instance
variables by making them private. Then the only way to modify the object is
through accessor functions and modifiers. If we examine all the accessors and
modifiers, and we can show that every one of them maintains the invariants,
then we can prove that it is impossible for an invariant to be violated.

Looking at the Complex class, we can list the functions that make assign-
ments to one or more instance variables:

the second constructor

calculateCartesian

calculatePolar

setCartesian

setPolar

In each case, it is straightforward to show that the function maintains each of
the invariants I listed. We have to be a little careful, though. Notice that I said
“maintain” the invariant. What that means is “If the invariant is true when the
function is called, it will still be true when the function is complete.”

That definition allows two loopholes. First, there may be some point in
the middle of the function when the invariant is not true. That’s ok, and in
some cases unavoidable. As long as the invariant is restored by the end of the
function, all is well.

The other loophole is that we only have to maintain the invariant if it was
true at the beginning of the function. Otherwise, all bets are off. If the invariant
was violated somewhere else in the program, usually the best we can do is detect
the error, output an error message, and exit.

14.9 Preconditions

Often when you write a function you make implicit assumptions about the pa-
rameters you receive. If those assumptions turn out to be true, then everything
is fine; if not, your program might crash.

To make your programs more robust, it is a good idea to think about your
assumptions explicitly, document them as part of the program, and maybe write
code that checks them.

For example, let’s take another look at calculateCartesian. Is there an
assumption we make about the current object? Yes, we assume that the polar

156 CHAPTER 14. CLASSES AND INVARIANTS

flag is set and that mag and theta contain valid data. If that is not true, then
this function will produce meaningless results.

One option is to add a comment to the function that warns programmers
about the precondition.

void Complex::calculateCartesian ()

// precondition: the current object contains valid polar coordinates

and the polar flag is set

// postcondition: the current object will contain valid Cartesian

coordinates and valid polar coordinates, and both the cartesian

flag and the polar flag will be set

{

real = mag * cos (theta);

imag = mag * sin (theta);

cartesian = true;

}

At the same time, I also commented on the postconditions, the things we
know will be true when the function completes.

These comments are useful for people reading your programs, but it is an
even better idea to add code that checks the preconditions, so that we can print
an appropriate error message:

void Complex::calculateCartesian ()

{

if (polar == false) {

cout <<

"calculateCartesian failed because the polar representation is invalid"

<< endl;

exit (1);

}

real = mag * cos (theta);

imag = mag * sin (theta);

cartesian = true;

}

The exit function causes the program to quit immediately. The return value
is an error code that tells the system (or whoever executed the program) that
something went wrong.

This kind of error-checking is so common that C++ provides a built-in
function to check preconditions and print error messages. If you include the
assert.h header file, you get a function called assert that takes a boolean
value (or a conditional expression) as an argument. As long as the argument
is true, assert does nothing. If the argument is false, assert prints an error
message and quits. Here’s how to use it:

void Complex::calculateCartesian ()

14.10. PRIVATE FUNCTIONS 157

{

assert (polar);

real = mag * cos (theta);

imag = mag * sin (theta);

cartesian = true;

assert (polar && cartesian);

}

The first assert statement checks the precondition (actually just part of it);
the second assert statement checks the postcondition.

In my development environment, I get the following message when I violate
an assertion:

Complex.cpp:63: void Complex::calculatePolar(): Assertion ‘cartesian’ failed.

Abort

There is a lot of information here to help me track down the error, including
the file name and line number of the assertion that failed, the function name
and the contents of the assert statement.

14.10 Private functions

In some cases, there are member functions that are used internally by a class, but
that should not be invoked by client programs. For example, calculatePolar
and calculateCartesian are used by the accessor functions, but there is prob-
ably no reason clients should call them directly (although it would not do any
harm). If we wanted to protect these functions, we could declare them private

the same way we do with instance variables. In that case the complete class
definition for Complex would look like:

class Complex

{

private:

double real, imag;

double mag, theta;

bool cartesian, polar;

void calculateCartesian ();

void calculatePolar ();

public:

Complex () { cartesian = false; polar = false; }

Complex (double r, double i)

{

real = r; imag = i;

158 CHAPTER 14. CLASSES AND INVARIANTS

cartesian = true; polar = false;

}

void printCartesian ();

void printPolar ();

double getReal ();

double getImag ();

double getMag ();

double getTheta ();

void setCartesian (double r, double i);

void setPolar (double m, double t);

};

The private label at the beginning is not necessary, but it is a useful reminder.

14.11 Glossary

class: In general use, a class is a user-defined type with member functions. In
C++, a class is a structure with private instance variables.

accessor function: A function that provides access (read or write) to a private
instance variable.

invariant: A condition, usually pertaining to an object, that should be true
at all times in client code, and that should be maintained by all member
functions.

precondition: A condition that is assumed to be true at the beginning of a
function. If the precondition is not true, the function may not work. It is
often a good idea for functions to check their preconditions, if possible.

postcondition: A condition that is true at the end of a function.

Chapter 15

File Input/Output and
apmatrixes

In this chapter we will develop a program that reads and writes files, parses
input, and demonstrates the apmatrix class. We will also implement a data
structure called Set that expands automatically as you add elements.

Aside from demonstrating all these features, the real purpose of the program
is to generate a two-dimensional table of the distances between cities in the
United States. The output is a table that looks like this:

Atlanta 0

Chicago 700 0

Boston 1100 1000 0

Dallas 800 900 1750 0

Denver 1450 1000 2000 800 0

Detroit 750 300 800 1150 1300 0

Orlando 400 1150 1300 1100 1900 1200 0

Phoenix 1850 1750 2650 1000 800 2000 2100 0

Seattle 2650 2000 3000 2150 1350 2300 3100 1450 0

Atlanta Chicago Boston Dallas Denver Detroit Orlando Phoenix Seattle

The diagonal elements are all zero because that is the distance from a city to
itself. Also, because the distance from A to B is the same as the distance from
B to A, there is no need to print the top half of the matrix.

15.1 Streams

To get input from a file or send output to a file, you have to create an ifstream

object (for input files) or an ofstream object (for output files). These objects
are defined in the header file fstream.h, which you have to include.

A stream is an abstract object that represents the flow of data from a source
like the keyboard or a file to a destination like the screen or a file.

159

160 CHAPTER 15. FILE INPUT/OUTPUT AND APMATRIXES

We have already worked with two streams: cin, which has type istream,
and cout, which has type ostream. cin represents the flow of data from the
keyboard to the program. Each time the program uses the >> operator or the
getline function, it removes a piece of data from the input stream.

Similarly, when the program uses the << operator on an ostream, it adds a
datum to the outgoing stream.

15.2 File input

To get data from a file, we have to create a stream that flows from the file into
the program. We can do that using the ifstream constructor.

ifstream infile ("file-name");

The argument for this constructor is a string that contains the name of the file
you want to open. The result is an object named infile that supports all the
same operations as cin, including >> and getline.

int x;

apstring line;

infile >> x; // get a single integer and store in x

getline (infile, line); // get a whole line and store in line

If we know ahead of time how much data is in a file, it is straightforward to
write a loop that reads the entire file and then stops. More often, though, we
want to read the entire file, but don’t know how big it is.

There are member functions for ifstreams that check the status of the input
stream; they are called good, eof, fail and bad. We will use good to make
sure the file was opened successfully and eof to detect the “end of file.”

Whenever you get data from an input stream, you don’t know whether the
attempt succeeded until you check. If the return value from eof is true then
we have reached the end of the file and we know that the last attempt failed.
Here is a program that reads lines from a file and displays them on the screen:

apstring fileName = ...;

ifstream infile (fileName.c_str());

if (infile.good() == false) {

cout << "Unable to open the file named " << fileName;

exit (1);

}

while (true) {

getline (infile, line);

if (infile.eof()) break;

15.3. FILE OUTPUT 161

cout << line << endl;

}

The function c str converts an apstring to a native C string. Because the
ifstream constructor expects a C string as an argument, we have to convert
the apstring.

Immediately after opening the file, we invoke the good function. The return
value is false if the system could not open the file, most likely because it does
not exist, or you do not have permission to read it.

The statement while(true) is an idiom for an infinite loop. Usually there
will be a break statement somewhere in the loop so that the program does
not really run forever (although some programs do). In this case, the break

statement allows us to exit the loop as soon as we detect the end of file.

It is important to exit the loop between the input statement and the output
statement, so that when getline fails at the end of the file, we do not output
the invalid data in line.

15.3 File output

Sending output to a file is similar. For example, we could modify the previous
program to copy lines from one file to another.

ifstream infile ("input-file");

ofstream outfile ("output-file");

if (infile.good() == false || outfile.good() == false) {

cout << "Unable to open one of the files." << endl;

exit (1);

}

while (true) {

getline (infile, line);

if (infile.eof()) break;

outfile << line << endl;

}

15.4 Parsing input

In Section 1.4 I defined “parsing” as the process of analyzing the structure of
a sentence in a natural language or a statement in a formal language. For
example, the compiler has to parse your program before it can translate it into
machine language.

In addition, when you read input from a file or from the keyboard you often
have to parse it in order to extract the information you want and detect errors.

162 CHAPTER 15. FILE INPUT/OUTPUT AND APMATRIXES

For example, I have a file called distances that contains information about
the distances between major cities in the United States. I got this information
from a randomly-chosen web page

http://www.jaring.my/usiskl/usa/distance.html

so it may be wildly inaccurate, but that doesn’t matter. The format of the file
looks like this:

"Atlanta" "Chicago" 700

"Atlanta" "Boston" 1,100

"Atlanta" "Chicago" 700

"Atlanta" "Dallas" 800

"Atlanta" "Denver" 1,450

"Atlanta" "Detroit" 750

"Atlanta" "Orlando" 400

Each line of the file contains the names of two cities in quotation marks and
the distance between them in miles. The quotation marks are useful because
they make it easy to deal with names that have more than one word, like “San
Francisco.”

By searching for the quotation marks in a line of input, we can find the
beginning and end of each city name. Searching for special characters like
quotation marks can be a little awkward, though, because the quotation mark
is a special character in C++, used to identify string values.

If we want to find the first appearance of a quotation mark, we have to write
something like:

int index = line.find (’\"’);

The argument here looks like a mess, but it represents a single character, a
double quotation mark. The outermost single-quotes indicate that this is a
character value, as usual. The backslash (\) indicates that we want to treat
the next character literally. The sequence \" represents a quotation mark; the
sequence \’ represents a single-quote. Interestingly, the sequence \\ represents
a single backslash. The first backslash indicates that we should take the second
backslash seriously.

Parsing input lines consists of finding the beginning and end of each city
name and using the substr function to extract the cities and distance. substr
is an apstring member function; it takes two arguments, the starting index of
the substring and the length.

void processLine (const apstring& line)

{

// the character we are looking for is a quotation mark

char quote = ’\"’;

15.5. PARSING NUMBERS 163

// store the indices of the quotation marks in a vector

apvector<int> quoteIndex (4);

// find the first quotation mark using the built-in find

quoteIndex[0] = line.find (quote);

// find the other quotation marks using the find from Chapter 7

for (int i=1; i<4; i++) {

quoteIndex[i] = find (line, quote, quoteIndex[i-1]+1);

}

// break the line up into substrings

int len1 = quoteIndex[1] - quoteIndex[0] - 1;

apstring city1 = line.substr (quoteIndex[0]+1, len1);

int len2 = quoteIndex[3] - quoteIndex[2] - 1;

apstring city2 = line.substr (quoteIndex[2]+1, len2);

int len3 = line.length() - quoteIndex[2] - 1;

apstring distString = line.substr (quoteIndex[3]+1, len3);

// output the extracted information

cout << city1 << "\t" << city2 << "\t" << distString << endl;

}

Of course, just displaying the extracted information is not exactly what we want,
but it is a good starting place.

15.5 Parsing numbers

The next task is to convert the numbers in the file from strings to integers.
When people write large numbers, they often use commas to group the digits,
as in 1,750. Most of the time when computers write large numbers, they don’t
include commas, and the built-in functions for reading numbers usually can’t
handle them. That makes the conversion a little more difficult, but it also
provides an opportunity to write a comma-stripping function, so that’s ok. Once
we get rid of the commas, we can use the library function atoi to convert to
integer. atoi is defined in the header file stdlib.h.

To get rid of the commas, one option is to traverse the string and check
whether each character is a digit. If so, we add it to the result string. At the
end of the loop, the result string contains all the digits from the original string,
in order.

int convertToInt (const apstring& s)

{

apstring digitString = "";

for (int i=0; i<s.length(); i++) {

164 CHAPTER 15. FILE INPUT/OUTPUT AND APMATRIXES

if (isdigit (s[i])) {

digitString += s[i];

}

}

return atoi (digitString.c_str());

}

The variable digitString is an example of an accumulator. It is similar to
the counter we saw in Section 7.9, except that instead of getting incremented,
it gets accumulates one new character at a time, using string concatentation.

The expression

digitString += s[i];

is equivalent to

digitString = digitString + s[i];

Both statements add a single character onto the end of the existing string.
Since atoi takes a C string as a parameter, we have to convert digitString

to a C string before passing it as an argument.

15.6 The Set data structure

A data structure is a container for grouping a collection of data into a single
object. We have seen some examples already, including apstrings, which are
collections of characters, and apvectors which are collections on any type.

An ordered set is a collection of items with two defining properties:

Ordering: The elements of the set have indices associated with them. We can
use these indices to identify elements of the set.

Uniqueness: No element appears in the set more than once. If you try to add
an element to a set, and it already exists, there is no effect.

In addition, our implementation of an ordered set will have the following
property:

Arbitrary size: As we add elements to the set, it expands to make room for
new elements.

Both apstrings and apvectors have an ordering; every element has an index
we can use to identify it. Both none of the data structures we have seen so far
have the properties of uniqueness or arbitrary size.

To achieve uniqueness, we have to write an add function that searches the
set to see if it already exists. To make the set expand as elements are added,
we can take advantage of the resize function on apvectors.

Here is the beginning of a class definition for a Set.

15.6. THE SET DATA STRUCTURE 165

class Set {

private:

apvector<apstring> elements;

int numElements;

public:

Set (int n);

int getNumElements () const;

apstring getElement (int i) const;

int find (const apstring& s) const;

int add (const apstring& s);

};

Set::Set (int n)

{

apvector<apstring> temp (n);

elements = temp;

numElements = 0;

}

The instance variables are an apvector of strings and an integer that keeps
track of how many elements there are in the set. Keep in mind that the number
of elements in the set, numElements, is not the same thing as the size of the
apvector. Usually it will be smaller.

The Set constructor takes a single parameter, which is the initial size of the
apvector. The initial number of elements is always zero.

getNumElements and getElement are accessor functions for the instance
variables, which are private. numElements is a read-only variable, so we provide
a get function but not a set function.

int Set::getNumElements () const

{

return numElements;

}

Why do we have to prevent client programs from changing getNumElements?
What are the invariants for this type, and how could a client program break an
invariant. As we look at the rest of the Set member function, see if you can
convince yourself that they all maintain the invariants.

When we use the [] operator to access the apvector, it checks to make
sure the index is greater than or equal to zero and less than the length of the
apvector. To access the elements of a set, though, we need to check a stronger
condition. The index has to be less than the number of elements, which might
be smaller than the length of the apvector.

apstring Set::getElement (int i) const

166 CHAPTER 15. FILE INPUT/OUTPUT AND APMATRIXES

{

if (i < numElements) {

return elements[i];

} else {

cout << "Set index out of range." << endl;

exit (1);

}

}

If getElement gets an index that is out of range, it prints an error message (not
the most useful message, I admit), and exits.

The interesting functions are find and add. By now, the pattern for travers-
ing and searching should be old hat:

int Set::find (const apstring& s) const

{

for (int i=0; i<numElements; i++) {

if (elements[i] == s) return i;

}

return -1;

}

So that leaves us with add. Often the return type for something like add would
be void, but in this case it might be useful to make it return the index of the
element.

int Set::add (const apstring& s)

{

// if the element is already in the set, return its index

int index = find (s);

if (index != -1) return index;

// if the apvector is full, double its size

if (numElements == elements.length()) {

elements.resize (elements.length() * 2);

}

// add the new elements and return its index

index = numElements;

elements[index] = s;

numElements++;

return index;

}

The tricky thing here is that numElements is used in two ways. It is the number
of elements in the set, of course, but it is also the index of the next element to
be added.

15.7. APMATRIX 167

It takes a minute to convince yourself that that works, but consider this:
when the number of elements is zero, the index of the next element is 0. When
the number of elements is equal to the length of the apvector, that means that
the vector is full, and we have to allocate more space (using resize) before we
can add the new element.

Here is a state diagram showing a Set object that initially contains space
for 2 elements.

numElements: 1

elements:

0

1

numElements: 2

elements:

0

1

numElements: 3

elements:

0

1

2

3

"element1" "element1" "element1"

"element2" "element2"

"element3"

numElements: 0

elements:

0

1

Now we can use the Set class to keep track of the cities we find in the file.
In main we create the Set with an initial size of 2:

Set cities (2);

Then in processLine we add both cities to the Set and store the index that
gets returned.

int index1 = cities.add (city1);

int index2 = cities.add (city2);

I modified processLine to take the cities object as a second parameter.

15.7 apmatrix

An apmatrix is similar to an apvector except it is two-dimensional. Instead of
a length, it has two dimensions, called numrows and numcols, for “number of
rows” and “number of columns.”

Each element in the matrix is indentified by two indices; one specifies the
row number, the other the column number.

To create a matrix, there are four constructors:

apmatrix<char> m1;

apmatrix<int> m2 (3, 4);

apmatrix<double> m3 (rows, cols, 0.0);

apmatrix<double> m4 (m3);

168 CHAPTER 15. FILE INPUT/OUTPUT AND APMATRIXES

The first is a do-nothing constructor that makes a matrix with both dimensions
0. The second takes two integers, which are the initial number of rows and
columns, in that order. The third is the same as the second, except that it
takes an additional parameter that is used to initialized the elements of the
matrix. The fourth is a copy constructor that takes another apmatrix as a
parameter.

Just as with apvectors, we can make apmatrixes with any type of elements
(including apvectors, and even apmatrixes).

To access the elements of a matrix, we use the [] operator to specify the
row and column:

m2[0][0] = 1;

m3[1][2] = 10.0 * m2[0][0];

If we try to access an element that is out of range, the program prints an error
message and quits.

The numrows and numcols functions get the number of rows and columns.
Remember that the row indices run from 0 to numrows() -1 and the column
indices run from 0 to numcols() -1.

The usual way to traverse a matrix is with a nested loop. This loop sets
each element of the matrix to the sum of its two indices:

for (int row=0; row < m2.numrows(); row++) {

for (int col=0; col < m2.numcols(); col++) {

m2[row][col] = row + col;

}

}

This loop prints each row of the matrix with tabs between the elements and
newlines between the rows:

for (int row=0; row < m2.numrows(); row++) {

for (int col=0; col < m2.numcols(); col++) {

cout << m2[row][col] << "\t";

}

cout << endl;

}

15.8 A distance matrix

Finally, we are ready to put the data from the file into a matrix. Specifically,
the matrix will have one row and one column for each city.

We’ll create the matrix in main, with plenty of space to spare:

apmatrix<int> distances (50, 50, 0);

15.9. A PROPER DISTANCE MATRIX 169

Inside processLine, we add new information to the matrix by getting the
indices of the two cities from the Set and using them as matrix indices:

int dist = convertToInt (distString);

int index1 = cities.add (city1);

int index2 = cities.add (city2);

distances[index1][index2] = distance;

distances[index2][index1] = distance;

Finally, in main we can print the information in a human-readable form:

for (int i=0; i<cities.getNumElements(); i++) {

cout << cities.getElement(i) << "\t";

for (int j=0; j<=i; j++) {

cout << distances[i][j] << "\t";

}

cout << endl;

}

cout << "\t";

for (int i=0; i<cities.getNumElements(); i++) {

cout << cities.getElement(i) << "\t";

}

cout << endl;

This code produces the output shown at the beginning of the chapter. The
original data is available from this book’s web page.

15.9 A proper distance matrix

Although this code works, it is not as well organized as it should be. Now that
we have written a prototype, we are in a good position to evaluate the design
and improve it.

What are some of the problems with the existing code?

1. We did not know ahead of time how big to make the distance matrix, so
we chose an arbitrary large number (50) and made it a fixed size. It would
be better to allow the distance matrix to expand in the same way a Set

does. The apmatrix class has a function called resize that makes this
possible.

2. The data in the distance matrix is not well-encapsulated. We have to pass
the set of city names and the matrix itself as arguments to processLine,
which is awkward. Also, use of the distance matrix is error prone because
we have not provided accessor functions that perform error-checking. It

170 CHAPTER 15. FILE INPUT/OUTPUT AND APMATRIXES

might be a good idea to take the Set of city names and the apmatrix of
distances, and combine them into a single object called a DistMatrix.

Here is a draft of what the header for a DistMatrix might look like:

class DistMatrix {

private:

Set cities;

apmatrix<int> distances;

public:

DistMatrix (int rows);

void add (const apstring& city1, const apstring& city2, int dist);

int distance (int i, int j) const;

int distance (const apstring& city1, const apstring& city2) const;

apstring cityName (int i) const;

int numCities () const;

void print ();

};

Using this interface simplifies main:

void main ()

{

apstring line;

ifstream infile ("distances");

DistMatrix distances (2);

while (true) {

getline (infile, line);

if (infile.eof()) break;

processLine (line, distances);

}

distances.print ();

}

It also simplifies processLine:

void processLine (const apstring& line, DistMatrix& distances)

{

char quote = ’\"’;

apvector<int> quoteIndex (4);

quoteIndex[0] = line.find (quote);

for (int i=1; i<4; i++) {

quoteIndex[i] = find (line, quote, quoteIndex[i-1]+1);

15.10. GLOSSARY 171

}

// break the line up into substrings

int len1 = quoteIndex[1] - quoteIndex[0] - 1;

apstring city1 = line.substr (quoteIndex[0]+1, len1);

int len2 = quoteIndex[3] - quoteIndex[2] - 1;

apstring city2 = line.substr (quoteIndex[2]+1, len2);

int len3 = line.length() - quoteIndex[2] - 1;

apstring distString = line.substr (quoteIndex[3]+1, len3);

int distance = convertToInt (distString);

// add the new datum to the distances matrix

distances.add (city1, city2, distance);

}

I will leave it as an exercise to you to implement the member functions of
DistMatrix.

15.10 Glossary

ordered set: A data structure in which every element appears only once and
every element has an index that identifies it.

stream: A data structure that represents a “flow” or sequence of data items
from one place to another. In C++ streams are used for input and output.

accumulator: A variable used inside a loop to accumulate a result, often by
getting something added or concatenated during each iteration.

172 CHAPTER 15. FILE INPUT/OUTPUT AND APMATRIXES

Appendix A

Quick reference for AP
classes

These class definitions are copied from the College Board web page,

http://www.collegeboard.org/ap/computer-science/html/quick_ref.htm

with minor formatting changes. This is probably a good time to repeat the
following text, also from the College Board web page.

”Inclusion of the C++ classes defined for use in the Advanced
Placement Computer Science courses does not constitute endorse-
ment of the other material in this textbook by the College Board,
Educational Testing service, or the AP Computer Science Develop-
ment Committee. The versions of the C++ classes defined for use
in the AP Computer Science courses included in this textbook were
accurate as of 20 July 1999. Revisions to the classes may have been
made since that time.”

A.1 apstring

extern const int npos; // used to indicate not a position in the string

// public member functions

// constructors/destructor

apstring(); // construct empty string ""

apstring(const char * s); // construct from string literal

apstring(const apstring & str); // copy constructor

~apstring(); // destructor

// assignment

173

174 APPENDIX A. QUICK REFERENCE FOR AP CLASSES

const apstring & operator= (const apstring & str); // assign str

const apstring & operator= (const char * s); // assign s

const apstring & operator= (char ch); // assign ch

// accessors

int length() const; // number of chars

int find(const apstring & str) const; // index of first occurrence of str

int find(char ch) const; // index of first occurrence of ch

apstring substr(int pos, int len) const; // substring of len chars,

// starting at pos

const char * c_str() const; // explicit conversion to char *

// indexing

char operator[](int k) const; // range-checked indexing

char & operator[](int k); // range-checked indexing

// modifiers

const apstring & operator+= (const apstring & str); // append str

const apstring & operator+= (char ch); // append char

// The following free (non-member) functions operate on strings

// I/O functions

ostream & operator<< (ostream & os, const apstring & str);

istream & operator>> (istream & is, apstring & str);

istream & getline(istream & is, apstring & str);

// comparison operators

bool operator== (const apstring & lhs, const apstring & rhs);

bool operator!= (const apstring & lhs, const apstring & rhs);

bool operator< (const apstring & lhs, const apstring & rhs);

bool operator<= (const apstring & lhs, const apstring & rhs);

bool operator> (const apstring & lhs, const apstring & rhs);

bool operator>= (const apstring & lhs, const apstring & rhs);

// concatenation operator +

apstring operator+ (const apstring & lhs, const apstring & rhs);

apstring operator+ (char ch, const apstring & str);

apstring operator+ (const apstring & str, char ch);

A.2 apvector

template <class itemType>

class apvector

A.3. APMATRIX 175

// public member functions

// constructors/destructor

apvector(); // default constructor (size==0)

apvector(int size); // initial size of vector is size

apvector(int size, const itemType & fillValue); // all entries == fillValue

apvector(const apvector & vec); // copy constructor

~apvector(); // destructor

// assignment

const apvector & operator= (const apvector & vec);

// accessors

int length() const; // capacity of vector

// indexing

// indexing with range checking

itemType & operator[](int index);

const itemType & operator[](int index) const;

// modifiers

void resize(int newSize); // change size dynamically

//can result in losing values

A.3 apmatrix

template <class itemType>

class apmatrix

// public member functions

// constructors/destructor

apmatrix(); // default size is 0 x 0

apmatrix(int rows, int cols); // size is rows x cols

apmatrix(int rows, int cols, const itemType & fillValue);

// all entries == fillValue

apmatrix(const apmatrix & mat); // copy constructor

~apmatrix(); // destructor

// assignment

const apmatrix & operator = (const apmatrix & rhs);

// accessors

int numrows() const; // number of rows

int numcols() const; // number of columns

176 APPENDIX A. QUICK REFERENCE FOR AP CLASSES

// indexing

// range-checked indexing

const apvector<itemType> & operator[](int k) const;

apvector<itemType> & operator[](int k);

// modifiers

void resize(int newRows, int newCols); // resizes matrix to newRows x newCols

// (can result in losing values)

Index

absolute value, 41
abstract parameter, 133
abstraction, 133
accessor function, 148, 151, 158
accumulator, 164, 171
algorithm, 94, 95
ambiguity, 6
apmatrix, 167
apstring, 72

length, 67
vector of, 123

argument, 23, 27, 30
arithmetic

base 60, 93
complex, 149
floating-point, 22, 93
integer, 16

assert, 156
assignment, 13, 19, 53
atoi, 163

backslash, 162
bisection search, 130
body, 63

loop, 55
bool, 46, 52
boolean, 45
bottom-up design, 103, 142, 145
break statement, 137, 161
bug, 4

C string, 161
c str, 161
call, 30
call by reference, 79, 82
call by value, 78
Card, 121

Cartesian coordinate, 149
character

classification, 163
special sequence, 162

character operator, 17
cin, 83, 160
class, 147, 148, 158

apstring, 72
Card, 121
Complex, 149
Time, 29

client programs, 147
cmath, 23
comment, 7
comparable, 126
comparison

apstring, 72
operator, 31

comparison operator, 45, 126
compile, 2, 9
compile-time error, 4, 41
complete ordering, 126
Complex, 149
complex number, 149
composition, 18, 19, 24, 43, 81, 121
concatenate, 74
concatentation, 164
conditional, 31, 37

alternative, 32
chained, 33, 37
nested, 33, 37

constructor, 97, 107, 119, 122, 138,
139, 142, 149, 151, 165, 168

convention, 136
convert

to integer, 163
coordinate, 149

177

178 INDEX

Cartesian, 149
polar, 149

correctness, 132
counter, 70, 74, 103
cout, 83, 160
current object, 110

data encapsulation, 147, 155, 165
data structure, 164
dead code, 40, 52
dealing, 143
debugging, 4, 9, 41
deck, 127, 133, 138
declaration, 13, 76
decrement, 70, 74, 90
default, 137
detail hiding, 147
deterministic, 100, 107
diagram

stack, 36, 50
state, 36, 50

distribution, 102
division

floating-point, 56
integer, 16

double (floating-point), 21
Doyle, Arthur Conan, 5

efficiency, 143
element, 98, 107
encapsulation, 58, 60, 63, 70, 128

data, 147, 155, 165
functional, 147

encode, 121, 133
encrypt, 121
end of file, 160
enumerated type, 135
eof, 160
error, 9

compile-time, 4, 41
logic, 4
run-time, 4, 68, 90

exit, 156
expression, 16, 18, 19, 23, 24, 99

factorial, 51

file
input, 160

file output, 161
fill-in function, 91
find, 68, 129, 162
findBisect, 130
flag, 46, 151
floating-point, 30
floating-point number, 21
for, 99
formal language, 5, 9
frabjuous, 48
fruitful function, 30, 39
function, 30, 59, 88

accessor, 148, 151
bool, 46
definition, 24
fill-in, 91
for objects, 88
fruitful, 30, 39
helper, 142, 145
main, 24
Math, 23
member, 109, 119, 139
modifier, 90
multiple parameter, 29
nonmember, 110, 119
pure function, 88
void, 39

functional programming, 95

generalization, 58, 61, 63, 70, 93
getline, 161
good, 160

header file, 23, 159
hello world, 7
helper function, 142, 145
high-level language, 2, 9
histogram, 105, 107
Holmes, Sherlock, 5

ifstream, 160
immutable, 72
implementation, 119, 147
increment, 70, 74, 90

INDEX 179

incremental development, 41, 92
index, 68, 74, 99, 107, 128, 167
infinite loop, 55, 63, 161
infinite recursion, 36, 37, 132
initialization, 21, 30, 45
input

keyboard, 83
instance, 95
instance variable, 85, 95, 138, 149, 151
integer division, 16
interface, 119, 147
interpret, 2, 9
invariant, 154, 158
invoke, 119
iostream, 23
isdigit, 163
isGreater, 126
istream, 160
iteration, 54, 63

keyword, 15, 19

language
complete, 48
formal, 5
high-level, 2
low-level, 2
natural, 5
programming, 1
safe, 4

leap of faith, 50, 145
length

apstring, 67
vector, 100

linear search, 129
Linux, 5
literalness, 6
local variable, 60, 63
logarithm, 56
logic error, 4
logical operator, 46
loop, 55, 63, 99

body, 55
counting, 69, 103
for, 99
infinite, 55, 63, 161

nested, 128, 139, 168
search, 129

loop variable, 58, 61, 68, 99
low-level language, 2, 9

main, 24
map to, 121
mapping, 135
Math function, 23
math function

acos, 39
exp, 39
fabs, 41
sin, 39

matrix, 167
mean, 102
member function, 109, 119, 139
mergesort, 143, 145
modifier, 90, 95
modulus, 31, 37
multiple assignment, 53

natural language, 5, 9
nested loop, 128
nested structure, 34, 46, 81, 121
newline, 11, 36
nondeterministic, 100
nonmember function, 110, 119

object, 74, 88
current, 110
output, 88
vector of, 127

object-oriented programming, 148
ofstream, 161
operand, 16, 19
operator, 7, 16, 19

>>, 83
character, 17
comparison, 31, 45, 126
conditional, 52
decrement, 70, 90
increment, 70, 90
logical, 46, 52
modulus, 31

order of operations, 17

180 INDEX

ordered set, 171
ordering, 126, 164
ostream, 160
output, 7, 11, 88, 152
overloading, 44, 52, 142

parameter, 27, 30, 78
abstract, 133
multiple, 29

parameter passing, 78, 79, 82
parse, 6, 9
parsing, 161
parsing number, 163
partial ordering, 126
pass by reference, 85
pass by value, 85
pattern

accumulator, 164, 171
counter, 103
eureka, 129

pi, 39
poetry, 6
Point, 75
pointer, 110
polar coordinate, 149
portability, 2
postcondition, 155, 158
precedence, 17
precondition, 155, 158
print

Card, 123
vector of Cards, 129

printCard, 123
printDeck, 129, 139
private, 147, 149

function, 157
problem-solving, 9
program development, 41, 63

bottom-up, 103, 142, 145
encapsulation, 60
incremental, 92
planning, 92
top-down, 142

programming language, 1
programming style, 92
prose, 6

prototyping, 92
pseudocode, 141, 145
pseudorandom, 107
public, 149
pure function, 88, 95, 153

random, 106
random number, 100, 141
rank, 121
Rectangle, 80
recursion, 34, 37, 48, 131, 145

infinite, 36, 37, 132
recursive, 36
redundancy, 6
reference, 76, 79, 82, 85, 141
representation, 147
resize, 169
return, 34, 39, 82

inside loop, 129
return type, 52
return value, 39, 52
rounding, 22
run-time error, 4, 36, 68, 90, 99, 132,

156, 166, 168

safe language, 4
same, 125
scaffolding, 42, 52
searching, 129
seed, 106, 107
semantics, 4, 9, 46
Set, 164
set

ordered, 171
shuffling, 141, 143
sorting, 141, 143
special character, 162
stack, 36, 50
state, 76
state diagram, 76, 123, 128, 138, 167
statement, 3, 19

assignment, 13, 53
break, 137, 161
comment, 7
conditional, 31
declaration, 13, 76

INDEX 181

for, 99
initialization, 45
output, 7, 11, 88
return, 34, 39, 82, 129
switch, 136
while, 54

statistics, 102
stream, 83, 159, 171

status, 160
String, 11
string

concatentation, 164
native C, 161

struct, 75, 87, 148
as parameter, 78
as return type, 82
instance variable, 76
operations, 77
Point, 75
Rectangle, 80
Time, 87

structure, 85
structure definition, 140
subdeck, 133, 142
suit, 121
swapCards, 141
switch statement, 136
syntax, 4, 9

tab, 63
table, 56

two-dimensional, 58
temporary variable, 40
testing, 132, 144
this, 110
Time, 87
top-down design, 142
traverse, 67, 74, 129

counting, 69, 103
Turing, Alan, 48
type, 12, 19

bool, 45
double, 21
enumerated, 135
int, 16
String, 11

vector, 97
typecasting, 22

value, 12, 13, 19
boolean, 45

variable, 13, 19
instance, 138, 149, 151
local, 60, 63
loop, 58, 61, 68, 99
temporary, 40

vector, 97, 107
copying, 99
element, 98
length, 100
of apstring, 123
of Cards, 138
of object, 127

void, 39, 52, 88

while statement, 54

